Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 91(1): 808-816, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30518209

RESUMO

Novel fluorescent diazaoxatriangulenium (DAOTA) pH indicators for lifetime-based self-referenced pH sensing are reported. The DAOTA dyes were decorated with phenolic-receptor groups inducing fluorescence quenching via a photoinduced-electron-transfer mechanism. Electron-withdrawing chlorine substituents ensure response in the most relevant pH range (apparent p Ka' values of ∼5 and 7.5 for the p, p-dichlorophenol- and p-chlorophenol-substituted dyes, respectively). The dyes feature long fluorescence lifetimes (17-20 ns), high quantum yields (∼60%), and high photostabilities. Planar optodes are prepared upon immobilization of the dyes into polyurethane hydrogel D4. Apart from the response in the fluorescence intensity, the optodes show pH-dependent lifetime behavior, which makes them suitable for studying 2D pH distributions with the help of fluorescence-lifetime-imaging techniques. The lifetime response is particularly pronounced for the sensors with high dye concentrations (0.5-1 wt % with respect to the polymer) and is attributed to the efficient homo-FRET mechanism.

2.
Anal Chem ; 91(5): 3233-3238, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30758940

RESUMO

Luminescence lifetime based imaging is still the most reliable method for generating chemical images using chemical sensor technology. However, only few commercial systems are available that enable imaging lifetimes within the relevant nanosecond to microsecond range. In this technical note we compare the performance of an older time-domain (TD) based camera system with a frequency-domain (FD) based camera system regarding their measuring characteristics and applicability for O2 and pH imaging in environmental samples and with different indicator dye systems emitting in the visible and near-infrared part of the spectrum. We conclude that the newly introduced FD imaging system delivers comparable if not better results than its predecessor, now enabling robust and simple chemical imaging based on FD luminescence lifetime measurements.

3.
Opt Lett ; 42(7): 1269-1272, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362747

RESUMO

Light-sheet microscopy has become an indispensable tool for fast, low phototoxicity volumetric imaging of biological samples, predominantly providing structural or analyte concentration data in its standard format. Fluorescence lifetime imaging microscopy (FLIM) provides functional contrast, but often at limited acquisition speeds and with complex implementation. Therefore, we incorporate a dedicated frequency domain CMOS FLIM camera and intensity-modulated laser into a light-sheet setup to add fluorescence lifetime imaging functionality, allowing the rapid acquisition of volumetric data with concentration independent contrast. We then apply the system to image live transgenic zebrafish, demonstrating the capacity to rapidly collect volumetric FLIM data from an in vivo sample.


Assuntos
Microscopia de Fluorescência/métodos , Animais , Animais Geneticamente Modificados , Fatores de Tempo , Peixe-Zebra/genética
4.
Biomed Opt Express ; 11(3): 1598-1616, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32206431

RESUMO

Fluorescence guided neurosurgery based on 5-aminolevulinic acid (5-ALA) has significantly increased maximal safe resections. Fluorescence lifetime imaging (FLIM) of 5-ALA could further boost this development by its increased sensitivity. However, neurosurgeons require real-time visual feedback which was so far limited in dual-tap CMOS camera based FLIM. By optimizing the number of phase frames required for reconstruction, we here demonstrate real-time 5-ALA FLIM of human high- and low-grade glioma with up to 12 Hz imaging rate over a wide field of view (11.0 x 11.0 mm). Compared to conventional fluorescence imaging, real-time FLIM offers enhanced contrast of weakly fluorescent tissue.

5.
J Vis Exp ; (154)2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31885385

RESUMO

We describe a method to image dissolved oxygen (O2), in 2D at high spatial (< 50-100 µm) and temporal (< 10 s) resolution. The method employs O2 sensitive luminescent sensor foils (planar optodes) in combination with a specialized camera system for imaging luminescence lifetime in the frequency-domain. Planar optodes are prepared by dissolving the O2-sensitive indicator dye in a polymer and spreading the mixture on a solid support in a defined thickness via knife coating. After evaporation of the solvent, the planar optode is placed in close contact with the sample of interest - here demonstrated with the roots of the aquatic plant Littorella uniflora. The O2 concentration-dependent change in the luminescence lifetime of the indicator dye within the planar optode is imaged via the backside of the transparent carrier foil and aquarium wall using a special camera. This camera measures the luminescence lifetime (µs) via a shift in phase angle between a modulated excitation signal and emission signal. This method is superior to luminescence intensity imaging methods, as the signal is independent of the dye concentration or intensity of the excitation source, and solely relies on the luminescence decay time, which is an intrinsically referenced parameter. Consequently, an additional reference dye or other means of referencing are not needed. We demonstrate the use of the system for macroscopic O2 imaging of plant rhizospheres, but the camera system can also easily be coupled to a microscope.


Assuntos
Imageamento Tridimensional , Luminescência , Oxigênio/metabolismo , Fotografação/métodos , Calibragem , Plantaginaceae/fisiologia , Rizosfera
6.
Microsc Res Tech ; 78(12): 1075-81, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26500051

RESUMO

Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition.


Assuntos
Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Imagem Óptica/instrumentação , Imagem Óptica/métodos , Calibragem , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/normas , Microscopia de Fluorescência/normas , Imagem Óptica/normas
7.
J Phycol ; 44(3): 541-50, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27041414

RESUMO

We used transparent planar oxygen optodes and a luminescence lifetime imaging system to map (at a pixel resolution of <200 µm) the two-dimensional distribution of O2 within the skeleton of a Porites lobata colony. The O2 distribution was closely correlated to the distribution of the predominant endolithic microalga, Ostreobium quekettii Bornet et Flahault that formed a distinct green band inside the skeleton. Oxygen production followed the outline of the Ostreobium band, and photosynthetic O2 production was detected at only 0.2 µmol photons m(-2) · s(-1) , while saturation occurred at ∼37 µmol photons m(-2) · s(-1) . Oxygen levels varied from ∼60% to 0% air saturation in the illuminated section of the coral skeleton in comparison to the darkened section. The O2 production within the Ostreobium band was lower in the region below the upward facing surface of the coral and elevated on the sides. Oxygen consumption in darkness was also greatest within the Ostreobium zone, as well as in the white skeleton zone immediately below the corallites. The rate of O2 depletion was not constant within zones and between zones, showing pronounced heterogeneity in endolithic respiration. When the coral was placed in darkness after a period of illumination, O2 levels declined by 50% within 20 min and approached steady-state after 40-50 min in darkness. Our study demonstrates the use of an important new tool in endolith photobiology and presents the first data of spatially resolved O2 concentration and its correlation to the physical structures and specific zones responsible for O2 production and consumption within the coral skeleton.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA