Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(49): 31510-31518, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229576

RESUMO

Herbivory is fundamental to the regulation of both global food webs and the extent of agricultural crop losses. Induced plant responses to herbivores promote resistance and often involve the perception of specific herbivore-associated molecular patterns (HAMPs); however, precisely defined receptors and elicitors associated with herbivore recognition remain elusive. Here, we show that a receptor confers signaling and defense outputs in response to a defined HAMP common in caterpillar oral secretions (OS). Staple food crops, including cowpea (Vigna unguiculata) and common bean (Phaseolus vulgaris), specifically respond to OS via recognition of proteolytic fragments of chloroplastic ATP synthase, termed inceptins. Using forward-genetic mapping of inceptin-induced plant responses, we identified a corresponding leucine-rich repeat receptor, termed INR, specific to select legume species and sufficient to confer inceptin-induced responses and enhanced defense against armyworms (Spodoptera exigua) in tobacco. Our results support the role of plant immune receptors in the perception of chewing herbivores and defense.


Assuntos
Herbivoria/fisiologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Plantas Geneticamente Modificadas , Spodoptera/fisiologia , Nicotiana/imunologia , Vigna/imunologia
2.
Plant Biotechnol J ; 19(4): 745-756, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33099859

RESUMO

Dengue virus (DENV) is an emerging threat causing an estimated 390 million infections per year. Dengvaxia, the only licensed vaccine, may not be adequately safe in young and seronegative patients; hence, development of a safer, more effective vaccine is of great public health interest. Virus-like particles (VLPs) are a safe and very efficient vaccine strategy, and DENV VLPs have been produced in various expression systems. Here, we describe the production of DENV VLPs in Nicotiana benthamiana using transient expression. The co-expression of DENV structural proteins (SP) and a truncated version of the non-structural proteins (NSPs), lacking NS5 that contains the RNA-dependent RNA polymerase, led to the assembly of DENV VLPs in plants. These VLPs were comparable in appearance and size to VLPs produced in mammalian cells. Contrary to data from other expression systems, expression of the protein complex prM-E was not successful, and strategies used in other expression systems to improve the VLP yield did not result in increased yields in plants but, rather, increased purification difficulties. Immunogenicity assays in BALB/c mice revealed that plant-made DENV1-SP + NSP VLPs led to a higher antibody response in mice compared with DENV-E domain III displayed inside bluetongue virus core-like particles and a DENV-E domain III subunit. These results are consistent with the idea that VLPs could be the optimal approach to creating candidate vaccines against enveloped viruses.


Assuntos
Vacinas contra Dengue , Imunidade Humoral , Vacinas de Partículas Semelhantes a Vírus , Proteínas Virais/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Dengue/genética , Camundongos , Camundongos Endogâmicos BALB C , Nicotiana , Vacinas de Partículas Semelhantes a Vírus/genética
3.
Surg Endosc ; 34(6): 2560-2566, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811451

RESUMO

BACKGROUND: Laparoscopic repair of recurrent as opposed to primary paraesophageal hernias (PEHs) are historically associated with increased peri-operative complication rates, worsened outcomes, and increased conversion rates. The robotic platform may aid surgeons in these complex revision procedures. The aim of this study was to compare the outcomes of patients undergoing robotic assisted laparoscopic (RAL) repair of recurrent as opposed to primary PEHs. METHODS: Patients undergoing RAL primary and recurrent PEH repairs from 2009 to 2017 at a single institution were reviewed. Demographics, use of mesh, estimated blood loss, intra-operative complications, conversion rates, operative time, rates of esophageal/gastric injury, hospital length of stay, re-admission/re-operation rates, recurrence, dysphagia, gas bloat, and pre- and post-operative proton pump inhibitor (PPI) use were analyzed. Analysis was accomplished using Chi-square test/Fischer's exact test for categorical variables and the Mann-Whitney U test for continuous variables. RESULTS: There were 298 patients who underwent RAL PEH repairs (247 primary, 51 recurrent). They were followed for a median (interquartile range) of 120 (44, 470) days. There were no significant differences in baseline demographics between groups. Patients in the recurrent PEH group had longer operative times, increased use of mesh, and increased length of hospital stay. They were also less likely to undergo fundoplication. There were no significant differences in estimated blood loss, incidence of intra-operative complications, re-admission rates, incidence of post-operative dysphagia and gas bloat, and incidence of post-operative PPI use. There were no conversions to open operative intervention or gastric/esophageal injury/leaks. CONCLUSIONS: Although repair of recurrent PEHs are historically associated with worse outcomes, in this series, RAL recurrent PEH repairs have similar peri-operative and post-operative outcomes as compared to primary PEH repairs. Whether this is secondary to the potential advantages afforded by the robotic platform deserves further study.


Assuntos
Hérnia Hiatal/cirurgia , Herniorrafia/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva , Estudos Retrospectivos
4.
Proc Natl Acad Sci U S A ; 113(12): 3389-94, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26944079

RESUMO

Plants use receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs) that are typical of whole classes of microbes. After ligand perception, many leucine-rich repeat (LRR)-containing PRRs interact with the LRR-RK BRI1-ASSOCIATED KINASE 1 (BAK1). BAK1 is thus expected to interact with unknown PRRs. Here, we used BAK1 as molecular bait to identify a previously unknown LRR-RLP required for the recognition of the csp22 peptide derived from bacterial cold shock protein. We established a method to identify proteins that interact with BAK1 only after csp22 treatment. BAK1 was expressed transiently in Nicotiana benthamiana and immunopurified after treatment with csp22. BAK1-associated proteins were identified by mass spectrometry. We identified several proteins including known BAK1 interactors and a previously uncharacterized LRR-RLP that we termed RECEPTOR-LIKE PROTEIN REQUIRED FOR CSP22 RESPONSIVENESS (NbCSPR). This RLP associates with BAK1 upon csp22 treatment, and NbCSPR-silenced plants are impaired in csp22-induced defense responses. NbCSPR confers resistance to bacteria in an age-dependent and flagellin-induced manner. As such, it limits bacterial growth and Agrobacterium-mediated transformation of flowering N. benthamiana plants. Transgenic expression of NbCSPR into Arabidopsis thaliana conferred responsiveness to csp22 and antibacterial resistance. Our method may be used to identify LRR-type RKs and RLPs required for PAMP perception/responsiveness, even when the active purified PAMP has not been defined.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas e Peptídeos de Choque Frio/fisiologia , Nicotiana/imunologia , Nicotiana/microbiologia
5.
PLoS Pathog ; 11(1): e1004602, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25607985

RESUMO

During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots.


Assuntos
Proteínas de Arabidopsis , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas de Plantas , Proteínas Serina-Treonina Quinases , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Agrobacterium tumefaciens/imunologia , Agrobacterium tumefaciens/patogenicidade , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/imunologia , Oryza/microbiologia , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas syringae/imunologia , Pseudomonas syringae/patogenicidade , Transdução de Sinais/genética , Transdução de Sinais/imunologia
6.
Curr Biol ; 33(23): 5071-5084.e7, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37977140

RESUMO

Cell walls are important interfaces of plant-fungal interactions, acting as robust physical and chemical barriers against invaders. Upon fungal colonization, plants deposit phenolics and callose at the sites of fungal penetration to prevent further fungal progression. Alterations in the composition of plant cell walls significantly impact host susceptibility. Furthermore, plants and fungi secrete glycan hydrolases acting on each other's cell walls. These enzymes release various sugar oligomers into the apoplast, some of which activate host immunity via surface receptors. Recent characterization of cell walls from plant-colonizing fungi has emphasized the abundance of ß-glucans in different cell wall layers, which makes them suitable targets for recognition. To characterize host components involved in immunity against fungi, we performed a protein pull-down with the biotinylated ß-glucan laminarin. Thereby, we identified a plant glycoside hydrolase family 81-type glucan-binding protein (GBP) as a ß-glucan interactor. Mutation of GBP1 and its only paralog, GBP2, in barley led to decreased colonization by the beneficial root endophytes Serendipita indica and S. vermifera, as well as the arbuscular mycorrhizal fungus Rhizophagus irregularis. The reduction of colonization was accompanied by enhanced responses at the host cell wall, including an extension of callose-containing cell wall appositions. Moreover, GBP mutation in barley also reduced fungal biomass in roots by the hemibiotrophic pathogen Bipolaris sorokiniana and inhibited the penetration success of the obligate biotrophic leaf pathogen Blumeria hordei. These results indicate that GBP1 is involved in the establishment of symbiotic associations with beneficial fungi-a role that has potentially been appropriated by barley-adapted pathogens.


Assuntos
Hordeum , Micorrizas , beta-Glucanas , Hordeum/metabolismo , Simbiose/fisiologia , Fungos , Micorrizas/fisiologia , Plantas , beta-Glucanas/metabolismo , Raízes de Plantas/metabolismo
7.
Mol Plant Microbe Interact ; 24(7): 827-38, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21361788

RESUMO

RPP5 is the seminal example of a cytoplasmic NB-LRR receptor-like protein that confers downy mildew resistance in Arabidopsis thaliana. In this study, we describe the cloning and molecular characterization of the gene encoding ATR5(Emoy2), an avirulence protein from the downy mildew pathogen Hyaloperonospora arabidopsidis isolate Emoy2. ATR5(Emoy2) triggers defense response in host lines expressing the functional RPP5 allele from Landsberg erecta (Ler-0). ATR5(Emoy2) is embedded in a cluster with two additional ATR5-like (ATR5L) genes, most likely resulting from gene duplications. ATR5L proteins do not trigger RPP5-mediated resistance and the copy number of ATR5L genes varies among H. arabidopsidis isolates. ATR5(Emoy2) and ATR5L proteins contain a signal peptide, canonical EER motif, and an RGD motif. However, they lack the canonical translocation motif RXLR, which characterizes most oomycete effectors identified so far. The signal peptide and the N-terminal regions including the EER motif of ATR5(Emoy2) are not required to trigger an RPP5-dependent immune response. Bioinformatics screen of H. arabidopsidis Emoy2 genome revealed the presence of 173 open reading frames that potentially encode for secreted proteins similar to ATR5(Emoy2), in which they share some motifs such as EER but there is no canonical RXLR motif.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Genes , Oomicetos/genética , Doenças das Plantas , Sequência de Aminoácidos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Clonagem Molecular , Resistência à Doença , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Família Multigênica , Proteínas/química , Proteínas/genética , Proteínas/fisiologia , Alinhamento de Sequência , Análise de Sequência de DNA
8.
Mol Plant Pathol ; 21(2): 147-159, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31769595

RESUMO

Acremonium strictum elicitor subtilisin (AsES) is a 34-kDa serine-protease secreted by the strawberry fungal pathogen A. strictum. On AsES perception, a set of defence reactions is induced, both locally and systemically, in a wide variety of plant species and against pathogens of alternative lifestyles. However, it is not clear whether AsES proteolytic activity is required for triggering a defence response or if the protein itself acts as an elicitor. To investigate the necessity of the protease activity to activate the defence response, AsES coding sequences of the wild-type gene and a mutant on the active site (S226A) were cloned and expressed in Escherichia coli. Our data show that pretreatment of Arabidopsis plants with inactive proteins, i.e. inhibited with phenylmethylsulphonyl fluoride (PMSF) and mutant, resulted in an increased systemic resistance to Botrytis cinerea and expression of defence-related genes in a temporal manner that mimics the effect already reported for the native AsES protein. The data presented in this study indicate that the defence-eliciting property exhibited by AsES is not associated with its proteolytic activity. Moreover, the enhanced expression of some immune marker genes, seedling growth inhibition and the involvement of the co-receptor BAK1 observed in plants treated with AsES suggests that AsES is being recognized as a pathogen-associated molecular pattern by a leucine-rich repeat receptor. The understanding of the mechanism of action of AsES will contribute to the development of new breeding strategies to confer durable resistance in plants.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas Fúngicas/metabolismo , Subtilisina/metabolismo , Botrytis/patogenicidade , Proteínas Fúngicas/genética , Fluoreto de Fenilmetilsulfonil/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal/fisiologia , Subtilisina/genética
9.
J Exp Bot ; 60(13): 3645-54, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19628572

RESUMO

A highly evolved surveillance system in plants is able to detect a broad range of signals originating from pathogens, damaged tissues, or altered developmental processes, initiating sophisticated molecular mechanisms that result in defence, wound healing, and development. Microbe-associated molecular pattern molecules (MAMPs), damage-associated molecular pattern molecules (DAMPs), virulence factors, secreted proteins, and processed peptides can be recognized directly or indirectly by this surveillance system. Nucleotide binding-leucine rich repeat proteins (NB-LRR) are intracellular receptors and have been targeted by breeders for decades to elicit resistance to crop pathogens in the field. Receptor-like kinases (RLKs) or receptor like proteins (RLPs) are membrane bound signalling molecules with an extracellular receptor domain. They provide an early warning system for the presence of potential pathogens and activate protective immune signalling in plants. In addition, they act as a signal amplifier in the case of tissue damage, establishing symbiotic relationships and effecting developmental processes. The identification of several important ligands for the RLK-type receptors provided an opportunity to understand how plants differentiate, how they distinguish beneficial and detrimental stimuli, and how they co-ordinate the role of various types of receptors under varying environmental conditions. The diverse roles of extra-and intracellular plant receptors are examined here and the recent findings on how they promote defence and development is reviewed.


Assuntos
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/química , Plantas/genética , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética
10.
Nat Plants ; 4(3): 172-180, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29483684

RESUMO

Localized control of cell death is crucial for the resistance of plants to pathogens. Papain-like cysteine proteases (PLCPs) regulate plant defence to drive cell death and protection against biotrophic pathogens. In maize (Zea mays), PLCPs are crucial in the orchestration of salicylic acid (SA)-dependent defence signalling. Despite this central role in immunity, it remains unknown how PLCPs are activated, and which downstream signals they induce to trigger plant immunity. Here, we discover an immune signalling peptide, Z. mays immune signalling peptide 1 (Zip1), which is produced after salicylic acid (SA) treatment. In vitro studies demonstrate that PLCPs are required to release bioactive Zip1 from its propeptide precursor. Conversely, Zip1 treatment strongly elicits SA accumulation in leaves. Moreover, transcriptome analyses revealed that Zip1 and SA induce highly overlapping transcriptional changes. Consequently, Zip1 promotes the infection of the necrotrophic fungus Botrytis cinerea, while it reduces virulence of the biotrophic fungus Ustilago maydis. Thus, Zip1 represents the previously missing signal that is released by PLCPs to activate SA defence signalling.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/metabolismo , Zea mays/metabolismo , Perfilação da Expressão Gênica , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Transdução de Sinais
11.
Science ; 355(6322): 287-289, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28104890

RESUMO

In plants, perception of invading pathogens involves cell-surface immune receptor kinases. Here, we report that the Arabidopsis SITE-1 PROTEASE (S1P) cleaves endogenous RAPID ALKALINIZATION FACTOR (RALF) propeptides to inhibit plant immunity. This inhibition is mediated by the malectin-like receptor kinase FERONIA (FER), which otherwise facilitates the ligand-induced complex formation of the immune receptor kinases EF-TU RECEPTOR (EFR) and FLAGELLIN-SENSING 2 (FLS2) with their co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) to initiate immune signaling. We show that FER acts as a RALF-regulated scaffold that modulates receptor kinase complex assembly. A similar scaffolding mechanism may underlie FER function in other signaling pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Hormônios Peptídicos/metabolismo , Fosfotransferases/metabolismo , Imunidade Vegetal , Pró-Proteína Convertases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Receptores de Reconhecimento de Padrão/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais
12.
Plant Physiol Biochem ; 49(12): 1420-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22078379

RESUMO

Brassinosteroids (BRs) are plant steroid hormones and, when applied exogenously, they induce physiological responses, including tolerance to heat shock (HS). How endogenous BR content and altered perception of BRs influence thermal tolerance is poorly understood. BR-induced thermotolerance in tomato seedlings with altered BR homeostasis was examined by assessing the survival, ion leakage and lipid peroxidation of seedlings from a BR-deficient mutant (extreme dwarf d(x)), a partially BR-insensitive mutant curl3(-abs) allele (curl3 altered brassinolide sensitivity) and a line overexpressing the Dwarf, BR-biosynthesis gene (35SD). We confirmed that treatment with 1 µM of epi-brassinolide (EBL) induces thermotolerance of wild type seedlings following a HS regime at 45 °C. The curl3(-abs) seedlings had the highest basal tolerance to heat, whereas the EBL-induced thermal tolerance of d(x) seedlings was greatest and responded to lower EBL concentrations. The d(x) and 35SD seedlings had similar thermal tolerance; however, they showed increased signs of oxidative stress. EBL reduced the induction of lipid peroxidation of seedlings after recovery from heat. Highest oxidative stress and peroxidase (POX) activity (EC 1.11.1.7) was in BR-deficient d(x) mutant seedlings. EBL was able of inducing POX activity but not other antioxidant enzymes; however, effects of HS on POX activity of seedlings were absent or less marked. Taking together, results indicate that thermal tolerance is independent of endogenous BR content, but HS-mediated oxidative stress depends on BR levels.


Assuntos
Adaptação Fisiológica/fisiologia , Brassinosteroides/metabolismo , Resposta ao Choque Térmico/fisiologia , Estresse Oxidativo , Solanum lycopersicum/metabolismo , Esteroides Heterocíclicos/metabolismo , Estresse Fisiológico , Alelos , Brassinosteroides/farmacologia , Ativação Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Genes de Plantas , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Homeostase , Temperatura Alta , Peroxidação de Lipídeos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Mutação , Peroxidase/metabolismo , Fitosteróis/genética , Fitosteróis/metabolismo , Plântula , Esteroides Heterocíclicos/farmacologia
13.
Plant Signal Behav ; 3(1): 54-5, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19704770

RESUMO

Brassinosteroids (BRs) are perceived by Brassinosteroid Insensitive 1 (BRI1), that encodes a leucine-rich repeat receptor kinase. Tomato BRI1 has previously been implicated in both systemin and BR signalling. The role of tomato BRI1 in BR signalling was confirmed, however it was found not to be essential for systemin/wound signalling. Tomato roots were shown to respond to systemin but this response varied according to the species and growth conditions. Overall the data indicates that mutants defective in tomato BRI1 are not defective in systemin-induced wound signalling and that systemin perception can occur via a non-BRI1 mechanism.

14.
Plant Cell ; 19(5): 1709-17, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17513502

RESUMO

The tomato Leu-rich repeat receptor kinase BRASSINOSTEROID INSENSITIVE1 (BRI1) has been implicated in both peptide (systemin) and steroid (brassinosteroid [BR]) hormone perception. In an attempt to dissect these signaling pathways, we show that transgenic expression of BRI1 can restore the dwarf phenotype of the tomato curl3 (cu3) mutation. Confirmation that BRI1 is involved in BR signaling is highlighted by the lack of BR binding to microsomal fractions made from cu3 mutants and the restoration of BR responsiveness following transformation with BRI1. In addition, wound and systemin responses in the cu3 mutants are functional, as assayed by proteinase inhibitor gene induction and rapid alkalinization of culture medium. However, we observed BRI1-dependent root elongation in response to systemin in Solanum pimpinellifolium. In addition, ethylene perception is required for normal systemin responses in roots. These data taken together suggest that cu3 is not defective in systemin-induced wound signaling and that systemin perception can occur via a non-BRI1 mechanism.


Assuntos
Peptídeos/farmacologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Solanum/efeitos dos fármacos , Álcalis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Brassinosteroides , Colestanóis/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Solanum lycopersicum/genética , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Proteínas de Plantas/genética , Solanum/crescimento & desenvolvimento , Esteroides Heterocíclicos/farmacologia , Ativação Transcricional
15.
Plant Physiol ; 138(3): 1247-58, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16009999

RESUMO

We demonstrate the use of laser photoacoustic detection (LPAD) as a highly sensitive method to detect in planta nitric oxide ((*)NO) production from tobacco (Nicotiana tabacum). LPAD calibration against (*)NO gas demonstrated a linear relationship over 2 orders of magnitude with a detection threshold of <20 pmol h(-1) (1 part per billion volume [ppbv]). The specificity of the photoacoustic signal for (*)NO when adding gas or the (*)NO donor, sodium nitroprusside, on injection into plant leaves, was demonstrated by its abolition with O(3) ((*)NO + O(3) --> NO(2) + O(2)). The utility of the LPAD method was shown by examination of a nonhost hypersensitive response and a disease induced by Pseudomonas syringae (P. s.) pv phaseolicola and P. s. pv tabaci in tobacco. (*)NO was detected within 40 min of challenge with P. s. pv phaseolicola, some 5 h before the initiation of visible tissue collapse. The wildfire tobacco pathogen P. s. pv tabaci initiated (*)NO generation at 2 h postinfection. The use of (*)NO donors, the scavenger CPTIO ([4-carboxyphenyl]-4,5-dihydro-4,4,5,5-tetramethyl-3-oxide), and the mammalian nitric oxide synthase inhibitor l-NMMA (N(G)-monomethyl-l-arginine) indicated that (*)NO influenced the kinetics of cell death and resistance to both avirulent and virulent bacteria in tobacco. These observations suggest that (*)NO is integral to the elicitation of cell death associated with these two bacterial pathogens in tobacco.


Assuntos
Lasers , Nicotiana/metabolismo , Nicotiana/parasitologia , Óxido Nítrico/metabolismo , Pseudomonas syringae/patogenicidade , Acústica , Dióxido de Carbono/metabolismo , Etilenos/metabolismo , Luz , Doenças das Plantas/microbiologia , Pseudomonas syringae/crescimento & desenvolvimento , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA