Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecology ; : e4424, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284796

RESUMO

Ecological interactions are a key component of biodiversity, essential for understanding ecosystem services and functioning. Recording and quantifying ecological interactions is challenging, frequently requiring complex logistics and substantial effort in the field. Camera traps are routinely used in ecology for various applications, and have proven to be an excellent method for passive and non-invasive sampling of plant-animal interactions. We implemented a standardized camera trap protocol to document vertebrate frugivores-fleshy fruited plants interactions in Doñana National Park, SW Spain, with the central objective of inventorying the diversity of plant-animal ecological interactions providing seed dispersal services. From 2018 to 2023 we recorded pairwise interactions from which we obtained qualitative (presence-absence) and quantitative (frequency of visits) information. Each record in the dataset contains information of a visit by an individual animal to an individual plant, resulting in any form of fleshy-fruit use and provides information on visitation phenology, visit length, and feeding behavior. The dataset presented here includes 10,659 frugivory interaction events for 59 vertebrate species (46 birds, 13 mammals) recorded on 339 plant individuals from 13 different plant species which dominate the fleshy-fruited plant assemblage in the Doñana National Park. The most recorded animal species consuming fruits and playing a legitimate seed dispersal role was Curruca melanocephala (1678 records) among birds and Vulpes vulpes among mammals (751 records). Cervus elaphus, a fruit consumer with a marginal role as legitimate seed disperser, was the most recorded mammal species (1508 records). Avian frugivores, particularly those from the Sylviidae and Turdidae families, are widespread in the region and play a crucial role in maintaining the dispersal service for the fleshy-fruited plant populations in the area. The dataset offers highly versatile quantitative information that can be used to investigate frugivory from the highest resolution scale, the interaction event between pairs of individuals. In addition, other information that can be extracted includes the timing of interactions of animals and plants (their phenological couplings), activity periods of the animals, behavior during the events and preferences for individual plants within populations. There are no copyright restrictions on the data. When using the data from this data paper in publications, we kindly request that you cite the paper accordingly. Additionally, we encourage researchers and educators to inform us about how they are using this data, as we value feedback and would like to be aware of its various applications.

2.
Nat Commun ; 14(1): 674, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750574

RESUMO

Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.


Assuntos
Artrópodes , Ecossistema , Humanos , Animais , Biodiversidade , Tundra , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA