Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Poult Sci ; 103(3): 103375, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198915

RESUMO

Domestic laying hens rely primarily on their hindlimbs for terrestrial locomotion. Although they perform flapping flight, they appear to use maximal power during descent and thus may lack control for maneuvering and avoiding injuries on landing. This in turn may result in injury in open rearing systems. Wing-assisted incline running (WAIR) requires a bird to use its wings to assist the hindlimbs during climbing of an incline, and training in WAIR may therefore provide a useful method to increase a hen's power reserve and control for flight. We subjected hens to an exercise regimen involving inclines to induce WAIR for 16 wk during rearing. We then measured wing and body kinematics during aerial descent from a 155 cm platform. We hypothesized that birds reared with exercise would be better able to modulate their wing and body kinematics for making slower, more-controlled descent and landing. Brown-feathered birds exhibited greater wing beat frequencies than white-feathered birds, which is consistent with the higher wing loading of brown-feathered birds and WAIR-trained birds exhibited greater initial flight velocities compared to control birds. This may indicate that WAIR training provided an improved capacity to modulate flight velocity and strengthen the leg muscles. Providing incline exercises during rearing may therefore improve welfare for adult laying hens as greater initial flight velocity should reduce the power required for supporting body weight in the air and allow a hen to direct her excess power toward maneuvering.


Assuntos
Galinhas , Corrida , Animais , Feminino , Locomoção , Peso Corporal , Plumas
2.
R Soc Open Sci ; 10(11): 230817, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034124

RESUMO

In flying birds, the pectoralis (PECT) and supracoracoideus (SUPRA) generate most of the power required for flight, while the wing feathers create the aerodynamic forces. However, in domestic laying hens, little is known about the architectural properties of these muscles and the forces the wings produce. As housing space increases for commercial laying hens, understanding these properties is important for assuring safe locomotion. We tested the effects of wing area loss on mass, physiological cross-sectional area (PCSA), and estimated muscle stress (EMS) of the PECT and SUPRA in white-feathered laying hens. Treatments included Unclipped (N = 18), Half-Clipped with primaries removed (N = 18) and Fully-Clipped with the primaries and secondaries removed (N = 18). The mass and PCSA of the PECT and SUPRA did not vary significantly with treatment. Thus, laying hen muscle anatomy may be relatively resistant to changes in external wing morphology. We observed significant differences in EMS among treatments, as Unclipped birds exhibited the greatest EMS. This suggests that intact wings provide the greatest stimulus of external force for the primary flight muscles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA