Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Langmuir ; 36(13): 3452-3460, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32202428

RESUMO

This article describes the synthesis of nanoporous silver submicrocubes (Np-Ag) capped with poly(allylamine hydrochloride) PAH/poly(styrenesulfonate) PSS bilayers (Np-Ag(PAH/PSS)n, 1 ≤ n ≤ 4) via layer-by-layer (LBL) assembly for the electrochemical glucose sensing. The consecutive LBL encapsulation of Np-Ag (average size ≈530 nm) with positively charged PAH and negatively charged PSS layers was monitored by using ζ-potential analyses, which showed that the sign of the ζ-potential became positive (+10 mV) or negative (-22 mV) depending on the charge of the encapsulating species. The thickness of two PAH/PSS bilayers on the Np-Ag was estimated to be ∼4 nm (consistent with a literature value of ∼1 nm per PAH or PSS layer) on the basis of a high-resolution transmission electron microscopy image of the Np-Ag(PAH/PSS)2. Moreover, the high quality of the polyelectrolyte capping on Np-Ag was evidenced by the elemental mapping analysis of particles (obtained by using high-angle annular dark-field scanning transmission electron microscopy), which showed a uniform spatial distribution of C, N, and S (derived from PAH and PSS layers). Among the four different Np-Ag(PAH/PSS)n (1 ≤ n ≤ 4) electrodes, Np-Ag(PAH/PSS)2 exhibited the highest electrocatalytic activity toward glucose because of the optimal thickness and density of its polyelectrolyte films (fabricated onto Np-Ag). The (Np-Ag(PAH/PSS)2 electrode demonstrated a detection limit of 20 µM, a sensitivity limit of 472.15 µA mM-1 cm-2, and a wide range of detection for glucose at concentrations as high as 23.3 mM along with good selectivity toward glucose. The findings of this study are expected to contribute to improvements in the fabrication and stability of various particle-type catalysts on an electrode surface and to efforts to optimize the device performance using the LBL encapsulation technique.

2.
Biomacromolecules ; 16(2): 660-6, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25587771

RESUMO

This article describes the formation of dopamine-melanin thin films (50-200 nm thick) at an air/dopamine solution interface under static conditions. Beneath these films, spherical melanin granules formed in bulk liquid phase. The thickness of dopamine-melanin films at the interface relied mainly on the concentration of dopamine solution and the reaction time. A plausible mechanism underlining dopamine-melanin thin film formation was proposed based on the hydrophobicity of dopamine-melanin aggregates and the mass transport of the aggregates to the air/solution interface as a result of convective flow. The thickness of the interfacial films increased linearly with the dopamine concentration and the reaction time. The dopamine-melanin thin film and granules (formed in bulk liquid phase) with a double-layered structure were transferred onto a solid substrate to mimic the (keratin layer)/(melanin granules) structure present in bird plumage, thereby preparing full dopamine-melanin thin-film reflectors. The reflected color of the thin-film reflectors depended on the film thickness, which could be adjusted according to the dopamine concentration. The reflectance of the resulted reflectors exhibited a maximal reflectance value of 8-11%, comparable to that of bird plumage (∼11%). This study provides a useful, simple, and low-cost approach to the fabrication of biomimetic thin-film reflectors using full dopamine-melanin materials.


Assuntos
Materiais Biomiméticos/química , Melaninas/química , Nanotecnologia/métodos , Soluções Farmacêuticas/química , Cor
3.
Langmuir ; 30(18): 5267-75, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24773165

RESUMO

This article describes the preparation, using layer-by-layer deposition techniques, of an all-solid-state flexible in-plane supercapacitor based on a poly(ethylene terephthalate) (PET) substrate, laminated with two strata of ultrathin multilayer films composed of 30 polyaniline (PANi)/reduced graphene oxide (RGO) bilayers and 30 poly(p-phenylenevinylene) (PPV)/RGO bilayers. The influence of the (PPV/RGO)30 stratum on the electrochemical properties of the (PANi/RGO)30/(PPV/RGO)30 film (denoted P30) (d = 90.1 nm) supported on a PET was evaluated and compared to the corresponding influence of the (PANi/RGO)53 film (denoted P53) (d = 91.5 nm). The volumetric capacitance of P30 at a discharge current of 20 A/cm(3) (957 F/cm(3)) was much higher than that obtained from P53 (733 F/cm(3)), indicating that the (PPV/RGO)30 film performed well as a current collector. Furthermore, an all-solid-state flexible in-plane EC assembled with P30 electrodes in parallel mode (denoted EC30) exhibited an outstanding volumetric capacitance (152 F/cm(3) at 20 A/cm(3)) with a high energy density (9.4 mW h/cm(3)) and power density (6.5 W/cm(3)), compared to EC53 (assembled with P53). The electron-transfer resistance of the P30 electrode corresponded to only 59% of the P53's value (1.53 vs 2.60 kΩ cm(2)). The high capacitance of EC30 was attributed to the low internal resistance of P30, which resulted from the presence of additional in-plane electrical pathways in the electrode. The enhanced transport led to 85% capacitance retention by EC30 (69% for EC53) after a 1000 charge/discharge cycles test. The series resistance variations (ΔR/R0) of EC30 also indicated good electromechanical durability in the device, with a 5.0% increase in the resistance (contrasted with a 10.8% increase in EC53) over 1000 bending cycles at a minimum radius of 5 mm. The excellent electrochemical properties of EC30 may potentially meet the requirements for miniaturized electrodes in the manufacture of flexible, lightweight, mechanically durable microelectronic applications.

4.
Langmuir ; 28(34): 12637-46, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22866750

RESUMO

Multilayer assemblies of uniform ultrathin film electrodes with good electrical conductivity and very large surface areas were prepared for use as electrochemical capacitors. A layer-by-layer self-assembly approach was employed in an effort to improve the processability of highly conducting polyaniline (PANi) and chemically modified graphene. The electrochemical properties of the multilayer film (MF-) electrodes, including the sheet resistance, volumetric capacitance, and charge/discharge ratio, were determined by the morphological modification and the method used to reduce the graphene oxide (GO) to reduced graphene oxide (RGO) in the multilayer films. The PANi and GO concentrations could be modulated to control the morphology of the GO monolayer film in the multilayer assemblies. Optical ellipsometry was used to determine the thickness of the GO film in a single layer (1.32 nm), which agreed well with the literature value (~1.3 nm). Hydroiodic acid (HI), hydrazine, or pyrolysis were tested for the reduction of GO to RGO. HI was found to be the most efficient technique for reducing the GO to RGO in the multilayer assemblies while minimizing damage to the virgin state of the acid-doped PANi. Ultimately, the MF-electrode, which could be optimized by fine-tuning the nanostructure and selecting a suitable reduction method, exhibited an excellent volumetric capacitance, good cycling stability, and a rapid charge/discharge rate, which are required for supercapacitors. A MF-electrode composed of 15 PANi/RGO bilayers yielded a volumetric capacitance of 584 F/cm(3) at a current density of 3.0 A/cm(3). Although this value decreased exponentially as the current density increased, approaching a value of 170 F/cm(3) at 100 A/cm(3), this volumetric capacitance is one of the best yet reported for the other carbon-based materials. The intriguing features of the MF-electrodes composed of PANi/RGO multilayer films offer a new microdimensional design for high energy storage devices for use in small portable electronic devices.


Assuntos
Compostos de Anilina/química , Capacitância Elétrica , Grafite/química , Impedância Elétrica , Eletroquímica , Eletrodos
5.
Langmuir ; 26(13): 11349-54, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20426435

RESUMO

This paper describes a pH-responsive multilayer film composed of two layered components, namely poly(allylamine hydrochloride) (PAH) and a copolymer of acrylic acid and [1,3]oxazine-modified acrylate (POA). The oxazine ring is an acidochromic chromophore and opens to form either cationic 3H-indolium or anionic hemiaminal in a pH-dependent manner. This structural transition was used to generate a net positive or negative charge on the membrane for selective ion permeation. Interestingly, the reversible oxazine ring opening and closing proceeded smoothly without significant steric hindrance in the multilayer film comprising 10 PAH/POA bilayers. The pH-responsive permselectivity for cationic and anionic probe molecules was demonstrated using a POA monolayer film adsorbed electrostatically onto an amino-functionalized ITO electrode. The origin of the excellent ion-transport selectivity in the 1 nm ultrathin POA membrane is discussed in terms of alternating charges of the aromatic amphoteric group, oxazine, in the polyeletrolyte membrane.


Assuntos
Eletrodos , Oxazinas/química , Polímeros/química , Concentração de Íons de Hidrogênio , Membranas Artificiais , Modelos Químicos , Estrutura Molecular
6.
J Colloid Interface Sci ; 549: 9-15, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31015057

RESUMO

Photothermal therapy (PTT) based on photothermal effect of the gold nanostructures, has been widely applied as a noninvasive therapy approach in cancer treatment. However, bare Au nanoparticles are not stable enough during the irradiation process, and cannot harvest sufficient energy to kill tumor cells. To improve this, we have fabricated a stable bioagent by loading gold nanorods (AuNRs) into multicompartment mesoporous silica nanoparticles (MMSNs) for the photothermal therapy. The procedure is that when AuNRs entrapped in MMSNs are irradiated by a laser in the near-infrared region of 808 nm, the hyperthermia produced by the assembled composites is strong enough to damage tumor tissues directly. Both experiments in vitro and in vivo demonstrate that the nanocomposites are perfect candidates as PTT agents for the cancer treatment with a high efficiency. Furthermore, it is found that the nanocomposites have good photostability and consistent temperature fluctuation over 11 on/off cycles with irradiation which the pure AuNRs will not have.


Assuntos
Antineoplásicos/química , Ouro/química , Nanocompostos/química , Nanotubos/química , Dióxido de Silício/química , Animais , Antineoplásicos/efeitos da radiação , Antineoplásicos/uso terapêutico , Carbonato de Cálcio/química , Sobrevivência Celular/efeitos dos fármacos , Humanos , Luz , Células MCF-7 , Masculino , Camundongos Endogâmicos BALB C , Nanocompostos/efeitos da radiação , Nanocompostos/uso terapêutico , Nanotubos/efeitos da radiação , Tamanho da Partícula , Fototerapia/métodos , Porosidade , Propriedades de Superfície
7.
J Colloid Interface Sci ; 535: 325-330, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30316119

RESUMO

At present, photophosphorylation in natural or artificial systems is accomplished by the production of protons or their pumping across the biomembranes. Herein, different from this strategy above, we demonstrate a designed system which can effectively enhance photophosphorylation by photo-induced proton-scavenging through molecular assembly. Upon the introduction of photobase generators, a (photo-) chemical reaction occurs to produce hydroxyl ions. Accompanying the further extramembranous acid-base neutralization reaction, an outbound flow of protons is generated to drive the reconstituted adenosine triphosphate (ATP) synthase to produce ATP. That is, contrary to biochemistry, the proton gradient to drive photophosphorylation derives from the scavenging of protons present in the external medium by hydroxyl ions, produced by the partially photo-induced splitting of photobase generator. Such assembled system holds great potential in ATP-consuming bioapplications.


Assuntos
Complexos de ATP Sintetase/metabolismo , Trifosfato de Adenosina/biossíntese , Hidróxidos/síntese química , Nanoestruturas/química , Prótons , Trifosfato de Adenosina/química , Hidróxidos/química , Tamanho da Partícula , Fosforilação , Processos Fotoquímicos , Propriedades de Superfície
8.
Chem Commun (Camb) ; (17): 2028-30, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18536810

RESUMO

Novel cross-linked sulfonated poly(ether sulfone)s, prepared by azide-assisted thermal irradiation, show not only low methanol permeability but also exceptionally high proton conductivity with oxidative and hydrolytic stability.

9.
J Nanosci Nanotechnol ; 7(12): 4285-93, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18283805

RESUMO

Monolayer arrays of monodispersed nanocrystals (<10 nm) onto three dimensional (3D) substrates have considerable potential for various engineering applications such as highly integrated memory devices, solar cells, biosensors and photo and electro luminescent displays because of their highly integrated features with nanocrystal homogeneity. However, most reports on nanocrystal arrays have focused on two dimensional (2D) flat substrates, and the production of wafer-scale monolayer arrays is still challenging. Here we address the feasibility of arraying nanocrystal monolayers in wafer-scale onto 3D substrates. We present both metal (Pd) and semiconductor (CdSe) nanocrystals arrayed in monolayer onto trenched silicon wafers (4 inch diameter) using a facile electrostatic adsorption scheme. In particular, CdSe nanocrystal arrays in the trench well showed superior luminescent efficiency compared to those onto the protruded trench flat, due to the densely arrayed CdSe nanocrystals in the vertical direction. Furthermore, the surface coverage controllability was investigated using a 2D silicon substrate. Our approach can be applied to generate highly efficient displays, memory chips and integrated sensing devices.

10.
ACS Appl Mater Interfaces ; 9(5): 4548-4557, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28094493

RESUMO

Here we describe a facile and scalable method for preparing defect-free graphene sheets exfoliated from graphite using the positively charged polyelectrolyte precursor poly(p-phenylenevinylene) (PPV-pre) as a stabilizer in an aqueous solution. The graphene exfoliated by PPV-pre was apparently stabilized in the solution as a form of graphene/PPV-pre (denoted to GPPV-pre), which remains in a homogeneous dispersion over a year. The thickness values of 300 selected 76% GPPV-pre flakes ranged from 1 to 10 nm, corresponding to between one and a few layers of graphene in the lateral dimensions of 1 to 2 µm. Furthermore, this approach was expected to yield a marked decrease in the density of defects in the electronic conjugation of graphene compared to that of graphene oxide (GO) obtained by Hummers' method. The positively charged GPPV-pre was employed to fabricate a poly(ethylene terephthalate) (PET) electrode layer-by-layer with negatively charged GO, yielding (GPPV-pre/GO)n film electrode. The PPV-pre and GO in the (GPPV-pre/GO)n films were simultaneously converted using hydroiodic acid vapor to fully conjugated PPV and reduced graphene oxide (RGO), respectively. The electrical conductivity of (GPPV/RGO)23 multilayer films was 483 S/cm, about three times greater than that of the (PPV/RGO)23 multilayer films (166 S/cm) comprising RGO (prepared by Hummers method). Furthermore, the superior electrical properties of GPPV were made evident, when comparing the capacitive performances of two supercapacitor systems; (polyaniline PANi/RGO)30/(GPPV/RGO)23/PET (volumetric capacitance = 216 F/cm3; energy density = 19 mWh/cm3; maximum power density = 498 W/cm3) and (PANi/RGO)30/(PPV/RGO)23/PET (152 F/cm3; 9 mWh/cm3; 80 W/cm3).

11.
ACS Appl Mater Interfaces ; 8(32): 20741-7, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27453989

RESUMO

The commercialized aluminum electrolytic capacitors (AECs) currently used for alternating current (AC) line-filtering are usually the largest components in the electronic circuits because of their low specific capacitances and bulky sizes. Herein, nitrogen-doped holey graphene (NHG) films were prepared by thermal annealing the composite films of polyvinylpyrrolidone (PVP), graphene oxide (GO), and ferric oxide (Fe2O3) nanorods followed by chemical etching with hydrochloride acid. The typical electrochemical capacitor with NHG electrodes exhibited high areal and volumetric specific capacitances of 478 µF cm(-2) and 1.2 F cm(-3) at 120 Hz, ultrafast frequency response with a phase angle of -81.2° and a resistor-capacitor time constant of 203 µs at 120 Hz, as well as excellent cycling stability. Thus, it is promising to replace conventional AEC for AC line-filtering in miniaturized electronics.

12.
Nanoscale ; 7(42): 17805-11, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26455597

RESUMO

This article describes the effect of the lateral size of graphene oxide (GO) on the humidity sensing properties of a GO-based sensor. The GO size effect on the humidity sensing performance was evaluated on gold electrodes drop-coated with either an ultralarge graphene oxide (UGO) sheet (lateral size = 47.4 ± 22.2 µm) or a small-sized graphene oxide (SGO) sheet (lateral size = 0.8 ± 0.5 µm). The in-plane conductance obtained from the UGO and SGO electrodes was found to increase by four orders of magnitude and by three orders of magnitude, respectively, upon exposure to relative humidity RH change from 7 to 100%. The maximal sensitivity (S) values of the UGO and SGO humidity sensors were determined to be S(UGO) = 4339 ± 433 and SSGO = 1982 ± 122. The GO size clearly influenced the overall proton conductivity, as evidenced by the activation enthalpy (Ea) required for proton conduction in UGO and SGO sheets: Ea (UGO) = 0.63 eV, Ea (SGO) = 1.14 eV. The UGO humidity sensor exhibited an excellent device performance with a high sensitivity and an ultrafast response/recovery time (0.2/0.7 s). Good humidity sensing stability was observed, with a variation of only ±4.6% over five days. The resistive-type UGO humidity sensor was capable of sensing the moisture on a fingertip at a distance of 0.5 mm with a sensitivity of 17.4 and a response/recovery time of 0.6 s/1.3 s. The excellent device performance of the UGO humidity sensor also permitted the determination of the position of a fingertip by detecting the fingertip moisture, hence offering a great potential for touchless display position interface applications.

13.
Nanoscale ; 7(12): 5292-8, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25721407

RESUMO

A reduced graphene oxide (rGO)-sulfur composite aerogel with a compact self-assembled rGO skin was further modified by an atomic layer deposition (ALD) of ZnO or MgO layer, and used as a free-standing electrode material of a lithium-sulfur (Li-S) battery. The rGO skin and ALD-oxide coating worked as natural and artificial barriers to constrain the polysulfides within the cathode region. As a result, the Li-S battery based on this electrode material exhibited superior cycling stability, good rate capability and high coulombic efficiency. Furthermore, ALD-ZnO coating was tested for performance improvement and found to be more effective than ALD-MgO coating. The ZnO modified G-S electrode with 55 wt% sulfur loading delivered a maximum discharge capacity of 998 mA h g(-1) at a current density of 0.2 C. A high capacity of 846 mA h g(-1) was achieved after charging/discharging for 100 cycles with a coulombic efficiency of over 92%. In the case of using LiNO3 as a shuttle inhibitor, this electrode showed an initial discharge capacity of 796 mA h g(-1) and a capacity retention of 81% after 250 cycles at a current density of 1 C with an average coulombic efficiency higher than 99.7%.

14.
Adv Mater ; 26(28): 4789-93, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24819855

RESUMO

An improved hydrothermal process is developed to fabricate macroporous graphene monoliths (MGMs) using a soft template of organic droplets. The MGMs are constructed from closed-cell distorted spherical pores. This unique microstructure makes MGMs that have low weight densities, good electrical conductivities, and excellent elasticity with rapid recovery rates.

15.
J Biomed Opt ; 19(5): 051210, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24407597

RESUMO

We demonstrate a simple method of stretching DNA to its full length, suitable for optical imaging and atomic force microscopy (AFM). Two competing forces on the DNA molecules, which are the electrostatic attraction between positively charged dye molecules (YOYO-1) intercalated into DNA and the negatively charged surface of glass substrate, and the centrifugal force of the rotating substrate, are mainly responsible for the effective stretching and the dispersion of single strands of DNA. The density of stretched DNA molecules could be controlled by the concentration of the dye-stained DNA solution. Stretching of single DNA molecules was confirmed by AFM imaging and the photoluminescence spectra of single DNA molecule stained with YOYO-1 were obtained, suggesting that our method is useful for spectroscopic analysis of DNA at the single molecule level.


Assuntos
DNA/química , Microscopia de Fluorescência/métodos , Espectrometria de Fluorescência/métodos , Benzoxazóis/química , Feminino , Corantes Fluorescentes/química , Vidro , Humanos , Microscopia de Força Atômica , Microscopia de Fluorescência/instrumentação , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Placenta/química , Gravidez , Compostos de Quinolínio/química , Espectrometria de Fluorescência/instrumentação
16.
ACS Nano ; 5(11): 9232-7, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21981012

RESUMO

In the present article, we present a new and convenient optical method for the preparation of self-standing polyelectrolyte multilayer films. This method employs the disassembly of a sacrificial layer stratum composed of five poly(acrylate, merocyanine) PMC/poly(diallyldimethylammonium chloride) PDADMAC bilayers, which is triggered by the irradiation with visible light. This leads to the conversion of the zwitterionic PMC to its neutral isomer poly(acrylate, spiropyran) PSP, whereby the attractive ionic interactions between the neighboring bilayers vanish. The disassembly of the sacrificial layers in deionized water was completed within 47 s, when in-situ monitored at the maximum absorbance of PSP (λ = 360 nm), employing UV/visible spectrometry. Surprisingly, the disassembly duration of the sacrificial layers increased very little with an upper target film composed of 75 PDADMAC/PSS bilayers. The quick release of a thick target film (d ∼ 232 nm) composed of 100 (PDADMAC)/(PSS) bilayers in a large scale (7 × 18 mm(2)) could be ascribed not only to the vanished electrostatic attractive interaction between the layer pairs but also to increased hydrophobicity of the sacrificial layer element due to the photoisomerization of zwitterionic ionic PMC to neutral PSP. The unique advantages of this method as compared to the conventional approaches are demonstrated with the fast release (~2 min) of self-standing film combined with a well-defined, thin sacrificial layer (d ~ 30 nm). Moreover, harsh release conditions are also avoided, which significantly broadens the choice of materials that can be incorporated into the free-standing film.


Assuntos
Eletrólitos/química , Luz , Processos Fotoquímicos , Polímeros/química , Cinética , Fenômenos Ópticos
17.
Langmuir ; 25(3): 1767-71, 2009 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-19113805

RESUMO

Toward the realization of nanoscale device control, we report a novel method for photoregulation of ion flux through a polyelectrolyte multilayer membrane by chromophore orientation that is adjusted either by illumination at normal incidence or by slantwise irradiation at an angle of 10 degrees with respect to the surface. Our results indicate that the chromophore reorientation caused by the slantwise irradiation controls the effective pore size and, consequently, the transport behavior on the nanoscale. The slantwise illumination, which includes six EZE photoisomerization cycles generated by alternately irradiating with ultraviolet (lambda = 360 nm) and visible (lambda = 450 nm) light, reversibly switches the orientation of E-azobenzene in the membrane between 53 +/- 2 degrees (high tilt) and 17 +/- 5 degrees (low tilt) with respect to the surface. The novel feature of this light-gated valve system is its extremely long-lived open-switch state; this behavior stands in contrast to that of other systems based on labile photoisomers, which tend to instantly return to the thermodynamically stable state.


Assuntos
Eletrólitos/química , Polietilenoglicóis/química , Polímeros/química , Íons/química , Microscopia Eletrônica de Varredura , Fotoquímica
19.
Langmuir ; 24(8): 4190-3, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18302432

RESUMO

The fabrication of a polyelectrolyte multilayer (PEM) on a porous membrane was successfully improved by using spin-coating electrostatic self-assembly. Surprisingly, the quality of the PEM film obtained on the nanoporous alumina substrate (i.e., its thickness and surface morphology) was comparable to that of a film deposited on silicon. An optical molecular switch that acts as an ion-gating channel was realized using a PEM membrane deposited layer-by-layer on an alumina support. One of the layer components of this device was a poly(acrylamide) copolymer containing an azobenzene chromophore, which is known to reveal strong voluminous expansion and contraction during light-induced reversible cis/trans isomerizations. The permeability of the bulk SO4(2-) ions was found to be sensitive to the changed channel sizes; for instance, the ion-permeation rate of SO4(2-) increased about 1.6 times after UV irradiation of the PEM, whereas that of the Cl- ion increased only 1.2 times. In the study, it was successfully demonstrated that the ion flow through the PEM membrane could be reversibly switched on and off over several azobenzene isomerization cycles.


Assuntos
Compostos Azo/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Condutividade Elétrica , Íons/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Estrutura Molecular , Fotoquímica , Porosidade
20.
Langmuir ; 23(9): 5093-6, 2007 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-17373829

RESUMO

In this article, a new methodological approach to the fabrication of organized molecular films with chromophores lying flat on the film surface has been investigated with the design of an azacrown-type multication, 1,4,10-[3-(4-(4'-methoxy-phenylazo)-2-nitro-phenoxy)propyl]-1,4,7,10,13,16-hexamethylhexaazacyclooctadecane, and LBL film deposition by using the electrostatic self-assembly method. The chromophore alignment was analyzed on the basis of the polarized UV-visible spectra: the tilt angle of the transition moment of trans-azobenzene with respect to the surface normal was determined to 64 +/- 2 degrees , indicating a strong trend for chromophores in the multilayered films to planar alignment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA