Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biostatistics ; 25(2): 541-558, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37037190

RESUMO

Whole-brain connectome data characterize the connections among distributed neural populations as a set of edges in a large network, and neuroscience research aims to systematically investigate associations between brain connectome and clinical or experimental conditions as covariates. A covariate is often related to a number of edges connecting multiple brain areas in an organized structure. However, in practice, neither the covariate-related edges nor the structure is known. Therefore, the understanding of underlying neural mechanisms relies on statistical methods that are capable of simultaneously identifying covariate-related connections and recognizing their network topological structures. The task can be challenging because of false-positive noise and almost infinite possibilities of edges combining into subnetworks. To address these challenges, we propose a new statistical approach to handle multivariate edge variables as outcomes and output covariate-related subnetworks. We first study the graph properties of covariate-related subnetworks from a graph and combinatorics perspective and accordingly bridge the inference for individual connectome edges and covariate-related subnetworks. Next, we develop efficient algorithms to exact covariate-related subnetworks from the whole-brain connectome data with an $\ell_0$ norm penalty. We validate the proposed methods based on an extensive simulation study, and we benchmark our performance against existing methods. Using our proposed method, we analyze two separate resting-state functional magnetic resonance imaging data sets for schizophrenia research and obtain highly replicable disease-related subnetworks.


Assuntos
Conectoma , Esquizofrenia , Humanos , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Simulação por Computador
2.
Mol Psychiatry ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336840

RESUMO

Schizophrenia is a prototypical network disorder with widespread brain-morphological alterations, yet it remains unclear whether these distributed alterations robustly reflect the underlying network layout. We tested whether large-scale structural alterations in schizophrenia relate to normative structural and functional connectome architecture, and systematically evaluated robustness and generalizability of these network-level alterations. Leveraging anatomical MRI scans from 2439 adults with schizophrenia and 2867 healthy controls from 26 ENIGMA sites and normative data from the Human Connectome Project (n = 207), we evaluated structural alterations of schizophrenia against two network susceptibility models: (i) hub vulnerability, which examines associations between regional network centrality and magnitude of disease-related alterations; (ii) epicenter mapping, which identifies regions whose typical connectivity profile most closely resembles the disease-related morphological alterations. To assess generalizability and specificity, we contextualized the influence of site, disease stages, and individual clinical factors and compared network associations of schizophrenia with that found in affective disorders. Our findings show schizophrenia-related cortical thinning is spatially associated with functional and structural hubs, suggesting that highly interconnected regions are more vulnerable to morphological alterations. Predominantly temporo-paralimbic and frontal regions emerged as epicenters with connectivity profiles linked to schizophrenia's alteration patterns. Findings were robust across sites, disease stages, and related to individual symptoms. Moreover, transdiagnostic comparisons revealed overlapping epicenters in schizophrenia and bipolar, but not major depressive disorder, suggestive of a pathophysiological continuity within the schizophrenia-bipolar-spectrum. In sum, cortical alterations over the course of schizophrenia robustly follow brain network architecture, emphasizing marked hub susceptibility and temporo-frontal epicenters at both the level of the group and the individual. Subtle variations of epicenters across disease stages suggest interacting pathological processes, while associations with patient-specific symptoms support additional inter-individual variability of hub vulnerability and epicenters in schizophrenia. Our work outlines potential pathways to better understand macroscale structural alterations, and inter- individual variability in schizophrenia.

3.
Psychol Med ; 54(5): 1045-1056, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37750294

RESUMO

BACKGROUND: Stress and depression have a reciprocal relationship, but the neural underpinnings of this reciprocity are unclear. We investigated neuroimaging phenotypes that facilitate the reciprocity between stress and depressive symptoms. METHODS: In total, 22 195 participants (52.0% females) from the population-based UK Biobank study completed two visits (initial visit: 2006-2010, age = 55.0 ± 7.5 [40-70] years; second visit: 2014-2019; age = 62.7 ± 7.5 [44-80] years). Structural equation modeling was used to examine the longitudinal relationship between self-report stressful life events (SLEs) and depressive symptoms. Cross-sectional data were used to examine the overlap between neuroimaging correlates of SLEs and depressive symptoms on the second visit among 138 multimodal imaging phenotypes. RESULTS: Longitudinal data were consistent with significant bidirectional causal relationship between SLEs and depressive symptoms. In cross-sectional analyses, SLEs were significantly associated with lower bilateral nucleus accumbal volume and lower fractional anisotropy of the forceps major. Depressive symptoms were significantly associated with extensive white matter hyperintensities, thinner cortex, lower subcortical volume, and white matter microstructural deficits, mainly in corticostriatal-limbic structures. Lower bilateral nucleus accumbal volume were the only imaging phenotypes with overlapping effects of depressive symptoms and SLEs (B = -0.032 to -0.023, p = 0.006-0.034). Depressive symptoms and SLEs significantly partially mediated the effects of each other on left and right nucleus accumbens volume (proportion of effects mediated = 12.7-14.3%, p < 0.001-p = 0.008). For the left nucleus accumbens, post-hoc seed-based analysis showed lower resting-state functional connectivity with the left orbitofrontal cortex (cluster size = 83 voxels, p = 5.4 × 10-5) in participants with high v. no SLEs. CONCLUSIONS: The nucleus accumbens may play a key role in the reciprocity between stress and depressive symptoms.


Assuntos
Núcleo Accumbens , Substância Branca , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Masculino , Núcleo Accumbens/diagnóstico por imagem , Depressão/diagnóstico por imagem , Estudos Transversais , Córtex Cerebral , Imageamento por Ressonância Magnética
4.
Mol Psychiatry ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882501

RESUMO

Genome-wide association studies (GWAS) of mood disorders in large case-control cohorts have identified numerous risk loci, yet pathophysiological mechanisms remain elusive, primarily due to the very small effects of common variants. We sought to discover risk variants with larger effects by conducting a genome-wide association study of mood disorders in a founder population, the Old Order Amish (OOA, n = 1,672). Our analysis revealed four genome-wide significant risk loci, all of which were associated with >2-fold relative risk. Quantitative behavioral and neurocognitive assessments (n = 314) revealed effects of risk variants on sub-clinical depressive symptoms and information processing speed. Network analysis suggested that OOA-specific risk loci harbor novel risk-associated genes that interact with known neuropsychiatry-associated genes via gene interaction networks. Annotation of the variants at these risk loci revealed population-enriched, non-synonymous variants in two genes encoding neurodevelopmental transcription factors, CUX1 and CNOT1. Our findings provide insight into the genetic architecture of mood disorders and a substrate for mechanistic and clinical studies.

5.
Stat Med ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38922949

RESUMO

The joint analysis of imaging-genetics data facilitates the systematic investigation of genetic effects on brain structures and functions with spatial specificity. We focus on voxel-wise genome-wide association analysis, which may involve trillions of single nucleotide polymorphism (SNP)-voxel pairs. We attempt to identify underlying organized association patterns of SNP-voxel pairs and understand the polygenic and pleiotropic networks on brain imaging traits. We propose a bi-clique graph structure (ie, a set of SNPs highly correlated with a cluster of voxels) for the systematic association pattern. Next, we develop computational strategies to detect latent SNP-voxel bi-cliques and an inference model for statistical testing. We further provide theoretical results to guarantee the accuracy of our computational algorithms and statistical inference. We validate our method by extensive simulation studies, and then apply it to the whole genome genetic and voxel-level white matter integrity data collected from 1052 participants of the human connectome project. The results demonstrate multiple genetic loci influencing white matter integrity measures on splenium and genu of the corpus callosum.

6.
BMC Psychiatry ; 24(1): 440, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867174

RESUMO

BACKGROUND: Clozapine is an off-label drug used in most countries to prevent suicide in individuals with schizophrenia. However, few studies have reported real-world prescription practices. This study aimed to explore the association between a history of suicidal behavior and clozapine prescribing during eight weeks of hospitalization for individuals with early-stage schizophrenia. METHODS: This observational cohort study used routine health data collected from a mental health hospital in Beijing, China. The study included 1057 inpatients who had schizophrenia onset within 3 years. History of suicidal behavior was coded from reviewing medical notes according to the Columbia Suicide Severity Rating Scale. Information on antipsychotic use during hospitalization was extracted from the prescription records. Time to clozapine use was analyzed using Cox regression models adjusted for sociodemographic and clinical covariates. RESULTS: The prevalence rates of self-harm, suicidal behavior, and suicide attempt were 12.3%, 7.5%, and 5.4%, respectively. A history of self-harm history was positively associated with clozapine uses upon admission (4.1% vs. 0.8%, exact p = 0.009). Among those who had not used clozapine and had no clozapine contraindication, A history of suicidal behavior increased the possibility of switch to clozapine within 56 days after admission (Hazard Ratio[95% CI], 6.09[2.08-17.83]) or during hospitalization (4.18[1.62-10.78]). CONCLUSION: The use of clozapine for early-stage schizophrenia was more frequent among those with suicidal behavior than among those without suicidal behavior in China, although the drug instructions do not label its use for suicide risk.


Assuntos
Antipsicóticos , Clozapina , Esquizofrenia , Tentativa de Suicídio , Humanos , Clozapina/uso terapêutico , Esquizofrenia/tratamento farmacológico , Masculino , Feminino , Adulto , Antipsicóticos/uso terapêutico , China/epidemiologia , Tentativa de Suicídio/estatística & dados numéricos , Estudos de Coortes , Comportamento Autodestrutivo/epidemiologia , Ideação Suicida , Hospitalização/estatística & dados numéricos , Adulto Jovem , Pessoa de Meia-Idade
7.
Mol Cell Neurosci ; 127: 103895, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37634742

RESUMO

In the last two decades of Genome-wide association studies (GWAS), nicotine-dependence-related genetic loci (e.g., nicotinic acetylcholine receptor - nAChR subunit genes) are among the most replicable genetic findings. Although GWAS results have reported tens of thousands of SNPs within these loci, further analysis (e.g., fine-mapping) is required to identify the causal variants. However, it is computationally challenging for existing fine-mapping methods to reliably identify causal variants from thousands of candidate SNPs based on the posterior inclusion probability. To address this challenge, we propose a new method to select SNPs by jointly modeling the SNP-wise inference results and the underlying structured network patterns of the linkage disequilibrium (LD) matrix. We use adaptive dense subgraph extraction method to recognize the latent network patterns of the LD matrix and then apply group LASSO to select causal variant candidates. We applied this new method to the UK biobank data to identify the causal variant candidates for nicotine addiction. Eighty-one nicotine addiction-related SNPs (i.e.,-log(p) > 50) of nAChR were selected, which are highly correlated (average r2>0.8) although they are physically distant (e.g., >200 kilobase away) and from various genes. These findings revealed that distant SNPs from different genes can show higher LD r2 than their neighboring SNPs, and jointly contribute to a complex trait like nicotine addiction.


Assuntos
Estudo de Associação Genômica Ampla , Tabagismo , Humanos , Estudo de Associação Genômica Ampla/métodos , Nicotina , Tabagismo/genética , Mapeamento Cromossômico , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único
8.
Neuroimage ; 265: 119786, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470375

RESUMO

Severe mental illnesses (SMIs) are often associated with compromised brain health, physical comorbidities, and cognitive deficits, but it is incompletely understood whether these comorbidities are intrinsic to SMI pathophysiology or secondary to having SMIs. We tested the hypothesis that cerebral, cardiometabolic, and cognitive impairments commonly observed in SMIs can be observed in non-psychiatric individuals with SMI-like brain patterns of deviation as seen on magnetic resonance imaging. 22,883 participants free of common neuropsychiatric conditions from the UK Biobank (age = 63.4 ± 7.5 years, range = 45-82 years, 50.9% female) were split into discovery and replication samples. The regional vulnerability index (RVI) was used to quantify each participant's respective brain similarity to meta-analytical patterns of schizophrenia spectrum disorder, bipolar disorder, and major depressive disorder in gray matter thickness, subcortical gray matter volume, and white matter integrity. Cluster analysis revealed five clusters with distinct RVI profiles. Compared with a cluster with no RVI elevation, a cluster with RVI elevation across all SMIs and brain structures showed significantly higher volume of white matter hyperintensities (Cohen's d = 0.59, pFDR < 10-16), poorer cardiovascular (Cohen's d = 0.30, pFDR < 10-16) and metabolic (Cohen's d = 0.12, pFDR = 1.3 × 10-4) health, and slower speed of information processing (|Cohen's d| = 0.11-0.17, pFDR = 1.6 × 10-3-4.6 × 10-8). This cluster also had significantly higher level of C-reactive protein and alcohol use (Cohen's d = 0.11 and 0.28, pFDR = 4.1 × 10-3 and 1.1 × 10-11). Three other clusters with respective RVI elevation in gray matter thickness, subcortical gray matter volume, and white matter integrity showed intermediate level of white matter hyperintensities, cardiometabolic health, and alcohol use. Our results suggest that cerebral, physical, and cognitive impairments in SMIs may be partly intrinsic via shared pathophysiological pathways with SMI-related brain anatomical changes.


Assuntos
Doenças Cardiovasculares , Disfunção Cognitiva , Transtorno Depressivo Maior , Substância Branca , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Testes Neuropsicológicos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/patologia , Substância Cinzenta/patologia , Substância Branca/patologia , Imageamento por Ressonância Magnética/métodos
9.
Hum Brain Mapp ; 44(6): 2636-2653, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36799565

RESUMO

Metabolic illnesses (MET) are detrimental to brain integrity and are common comorbidities in patients with mental illnesses, including major depressive disorder (MDD). We quantified effects of MET on standard regional brain morphometric measures from 3D brain MRI as well as diffusion MRI in a large sample of UK BioBank participants. The pattern of regional effect sizes of MET in non-psychiatric UKBB subjects was significantly correlated with the spatial profile of regional effects reported by the largest meta-analyses in MDD but not in bipolar disorder, schizophrenia or Alzheimer's disease. We used a regional vulnerability index (RVI) for MET (RVI-MET) to measure individual's brain similarity to the expected patterns in MET in the UK Biobank sample. Subjects with MET showed a higher effect size for RVI-MET than for any of the individual brain measures. We replicated elevation of RVI-MET in a sample of MDD participants with MET versus non-MET. RVI-MET scores were significantly correlated with the volume of white matter hyperintensities, a neurological consequence of MET and age, in both groups. Higher RVI-MET in both samples was associated with obesity, tobacco smoking and frequent alcohol use but was unrelated to antidepressant use. In summary, MET effects on the brain were regionally specific and individual similarity to the pattern was more strongly associated with MET than any regional brain structural metric. Effects of MET overlapped with the reported brain differences in MDD, likely due to higher incidence of MET, smoking and alcohol use in subjects with MDD.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Doenças Metabólicas , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
10.
BMC Med ; 21(1): 286, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542262

RESUMO

BACKGROUND: Microglia are known to regulate stress and anxiety in both humans and animal models. Psychosocial stress is the most common risk factor for the development of schizophrenia. However, how microglia/brain macrophages contribute to schizophrenia is not well established. We hypothesized that effector molecules expressed in microglia/macrophages were involved in schizophrenia via regulating stress susceptibility. METHODS: We recruited a cohort of first episode schizophrenia (FES) patients (n = 51) and age- and sex-paired healthy controls (HCs) (n = 46) with evaluated stress perception. We performed blood RNA-sequencing (RNA-seq) and brain magnetic resonance imaging, and measured plasma level of colony stimulating factor 1 receptor (CSF1R). Furthermore, we studied a mouse model of chronic unpredictable stress (CUS) combined with a CSF1R inhibitor (CSF1Ri) (n = 9 ~ 10/group) on anxiety behaviours and microglial biology. RESULTS: FES patients showed higher scores of perceived stress scale (PSS, p < 0.05), lower blood CSF1R mRNA (FDR = 0.003) and protein (p < 0.05) levels, and smaller volumes of the superior frontal gyrus and parahippocampal gyrus (both FDR < 0.05) than HCs. In blood RNA-seq, CSF1R-associated differentially expressed blood genes were related to brain development. Importantly, CSF1R facilitated a negative association of the superior frontal gyrus with PSS (p < 0.01) in HCs but not FES patients. In mouse CUS+CSF1Ri model, similarly as CUS, CSF1Ri enhanced anxiety (both p < 0.001). Genes for brain angiogenesis and intensity of CD31+-blood vessels were dampened after CUS-CSF1Ri treatment. Furthermore, CSF1Ri preferentially diminished juxta-vascular microglia/macrophages and induced microglia/macrophages morphological changes (all p < 0.05). CONCLUSION: Microglial/macrophagic CSF1R regulated schizophrenia-associated stress and brain angiogenesis.


Assuntos
Microglia , Esquizofrenia , Animais , Humanos , Camundongos , Encéfalo/patologia , Modelos Animais de Doenças , Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo
11.
J Neurosci Res ; 101(9): 1471-1483, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330925

RESUMO

Elevated arterial blood pressure (BP) is a common risk factor for cerebrovascular and cardiovascular diseases, but no causal relationship has been established between BP and cerebral white matter (WM) integrity. In this study, we performed a two-sample Mendelian randomization (MR) analysis with individual-level data by defining two nonoverlapping sets of European ancestry individuals (genetics-exposure set: N = 203,111; mean age = 56.71 years, genetics-outcome set: N = 16,156; mean age = 54.61 years) from UK Biobank to evaluate the causal effects of BP on regional WM integrity, measured by fractional anisotropy of diffusion tensor imaging. Two BP traits: systolic and diastolic blood pressure were used as exposures. Genetic variant was carefully selected as instrumental variable (IV) under the MR analysis assumptions. We existing large-scale genome-wide association study summary data for validation. The main method used was a generalized version of inverse-variance weight method while other MR methods were also applied for consistent findings. Two additional MR analyses were performed to exclude the possibility of reverse causality. We found significantly negative causal effects (FDR-adjusted p < .05; every 10 mmHg increase in BP leads to a decrease in FA value by .4% ~ 2%) of BP traits on a union set of 17 WM tracts, including brain regions related to cognitive function and memory. Our study extended the previous findings of association to causation for regional WM integrity, providing insights into the pathological processes of elevated BP that might chronically alter the brain microstructure in different regions.


Assuntos
Substância Branca , Humanos , Pessoa de Meia-Idade , Pressão Sanguínea/genética , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
12.
Mol Psychiatry ; 27(6): 2787-2802, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35365810

RESUMO

The long lapse between the presumptive origin of schizophrenia (SCZ) during early development and its diagnosis in late adolescence has hindered the study of crucial neurodevelopmental processes directly in living patients. Dopamine, a neurotransmitter consistently associated with the pathophysiology of SCZ, participates in several aspects of brain development including pruning of neuronal extensions. Excessive pruning is considered the cause of the most consistent finding in SCZ, namely decreased brain volume. It is therefore possible that patients with SCZ carry an increased susceptibility to dopamine's pruning effects and that this susceptibility would be more obvious in the early stages of neuronal development when dopamine pruning effects appear to be more prominent. Obtaining developing neurons from living patients is not feasible. Instead, we used Monocyte-Derived-Neuronal-like Cells (MDNCs) as these cells can be generated in only 20 days and deliver reproducible results. In this study, we expanded the number of individuals in whom we tested the reproducibility of MDNCs. We also deepened the characterization of MDNCs by comparing its neurostructure to that of human developing neurons. Moreover, we studied MDNCs from 12 controls and 13 patients with SCZ. Patients' cells differentiate more efficiently, extend longer secondary neurites and grow more primary neurites. In addition, MDNCs from medicated patients expresses less D1R and prune more primary neurites when exposed to dopamine. Haloperidol did not influence our results but the role of other antipsychotics was not examined and thus, needs to be considered as a confounder.


Assuntos
Esquizofrenia , Adolescente , Dopamina/uso terapêutico , Humanos , Monócitos , Neurônios , Reprodutibilidade dos Testes
13.
PLoS Biol ; 18(10): e3000883, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33091003

RESUMO

Humans are remarkably skilled at listening to one speaker out of an acoustic mixture of several speech sources. Two speakers are easily segregated, even without binaural cues, but the neural mechanisms underlying this ability are not well understood. One possibility is that early cortical processing performs a spectrotemporal decomposition of the acoustic mixture, allowing the attended speech to be reconstructed via optimally weighted recombinations that discount spectrotemporal regions where sources heavily overlap. Using human magnetoencephalography (MEG) responses to a 2-talker mixture, we show evidence for an alternative possibility, in which early, active segregation occurs even for strongly spectrotemporally overlapping regions. Early (approximately 70-millisecond) responses to nonoverlapping spectrotemporal features are seen for both talkers. When competing talkers' spectrotemporal features mask each other, the individual representations persist, but they occur with an approximately 20-millisecond delay. This suggests that the auditory cortex recovers acoustic features that are masked in the mixture, even if they occurred in the ignored speech. The existence of such noise-robust cortical representations, of features present in attended as well as ignored speech, suggests an active cortical stream segregation process, which could explain a range of behavioral effects of ignored background speech.


Assuntos
Córtex Auditivo/fisiologia , Fala/fisiologia , Estimulação Acústica , Acústica , Adulto , Atenção/fisiologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Fatores de Tempo , Adulto Jovem
14.
J Sleep Res ; 32(1): e13669, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35698853

RESUMO

An important measure of brain health is the integrity of white matter connectivity structures that link brain regions. Studies have found an association between poorer sleep quality and decreased white matter integrity. Stress is among the strongest predictors of sleep quality. This study aimed to evaluate the association between sleep quality and white matter and to test if the relationship persisted after accounting for stress. White matter microstructures were measured by diffusion tensor imaging in a population of Old Order Amish/Mennonite (N = 240). Sleep quality was determined by the Pittsburgh Sleep Quality Index. Current stress levels were measured by the perceived stress scale. Exposure to lifetime stress was measured by the lifetime stressor inventory. Microstructures of four white matter tracts: left and right anterior limbs of internal capsule, left anterior corona radiata, and genu of corpus callosum were significantly correlated with sleep quality (all p ≤ 0.001). The current stress level was a significant predictor of sleep quality (p ≤ 0.001) while lifetime stress was not. PSQI remained significantly associated with white matter integrity in these frontal tracts (all p < 0.01) after accounting for current stress and lifetime stress, while current and lifetime stress were not significant predictors of white matter in any of the four models. Sleep quality did not have any substantial mediation role between stress and white matter integrity. Sleep quality was significantly associated with several frontal white matter tracts that connect brain structures important for sleep regulation regardless of current or past stress levels.


Assuntos
Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Qualidade do Sono , Anisotropia , Encéfalo
15.
Eur Arch Psychiatry Clin Neurosci ; 273(4): 921-930, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36788147

RESUMO

Abnormalities in subcortical brain structures may reflect higher suicide risk in mood disorders, but less is known about its associations for schizophrenia. This cross-sectional imaging study aimed to explore whether the history of suicide attempts was associated with subcortical changes among individuals with schizophrenia. We recruited 44 individuals with schizophrenia and a history of suicide attempts (SZ-SA) and 44 individuals with schizophrenia but without a history of suicide attempts (SZ-NSA) and 44 healthy controls. Linear regression showed that SZ-SA had smaller volumes of the hippocampus (Cohen's d = -0.72), the amygdala (Cohen's d = -0.69), and some nuclei of the amygdala (Cohen's d, -0.57 to -0.72) than SZ-NSA after adjusting for age, sex, illness phase, and intracranial volume. There was no difference in the volume of the subfields of the hippocampus. It suggests the history of suicide attempts is associated with subcortical volume alterations in schizophrenia.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Tentativa de Suicídio , Imageamento por Ressonância Magnética/métodos , Tonsila do Cerebelo/diagnóstico por imagem , Hipocampo/diagnóstico por imagem
16.
Psychiatry Clin Neurosci ; 77(1): 12-19, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36184782

RESUMO

AIM: Approximately a third of patients with schizophrenia fail to adequately respond to antipsychotic medications, a condition known as treatment resistance (TR). We aimed to assess cognitive and cortical thickness deficits and their relationship to TR in schizophrenia. METHOD: We recruited patients with schizophrenia (n = 127), including patients at treatment initiation (n = 45), treatment-responsive patients (n = 40) and TR patients (n = 42), and healthy controls (n = 83). Clinical symptoms, neurocognitive function, and structural images were assessed. We performed group comparisons, and explored association of cortical thickness and cognition with TR. RESULTS: The TR patients showed significantly more severe clinical symptoms and cognitive impairment relative to the treatment-responsive group. Compared to healthy controls, 56 of 68 brain regions showed significantly reduced cortical thickness in patients with schizophrenia. Reductions in five regions were significantly associated with TR (reduction in TR relative to treatment-responsive patients), i.e. in the right caudal middle frontal gyrus, superior frontal cortex, fusiform gyrus, pars opercularis of the inferior frontal cortex, and supramarginal cortex. Cognition deficits were also significantly correlated with cortical thickness in these five regions in patients with schizophrenia. Cortical thickness of the right caudal middle frontal gyrus, superior frontal cortex and pars opercularis of the inferior frontal cortex also significantly mediated effects of cognitive deficits on TR. CONCLUSION: Treatment resistance in schizophrenia was associated with reduced thickness in the right caudal middle frontal gyrus, superior frontal cortex, fusiform gyrus, pars opercularis of the inferior frontal cortex, and supramarginal cortex. Cortical abnormalities further mediate cognitive deficits known to be associated with TR.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Lobo Frontal , Lobo Temporal , Cognição , Córtex Cerebral/diagnóstico por imagem
17.
Artigo em Inglês | MEDLINE | ID: mdl-37251499

RESUMO

Multimodal neuroimaging data have attracted increasing attention for brain research. An integrated analysis of multimodal neuroimaging data and behavioral or clinical measurements provides a promising approach for comprehensively and systematically investigating the underlying neural mechanisms of different phenotypes. However, such an integrated data analysis is intrinsically challenging due to the complex interactive relationships between the multimodal multivariate imaging variables. To address this challenge, a novel multivariate-mediator and multivariate-outcome mediation model (MMO) is proposed to simultaneously extract the latent systematic mediation patterns and estimate the mediation effects based on a dense bi-cluster graph approach. A computationally efficient algorithm is developed for dense bicluster structure estimation and inference to identify the mediation patterns with multiple testing correction. The performance of the proposed method is evaluated by an extensive simulation analysis with comparison to the existing methods. The results show that MMO performs better in terms of both the false discovery rate and sensitivity compared to existing models. The MMO is applied to a multimodal imaging dataset from the Human Connectome Project to investigate the effect of systolic blood pressure on whole-brain imaging measures for the regional homogeneity of the blood oxygenation level-dependent signal through the cerebral blood flow.

18.
Sensors (Basel) ; 23(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37112420

RESUMO

(1) Background: The correlations between brain connectivity abnormality and psychiatric disorders have been continuously investigated and progressively recognized. Brain connectivity signatures are becoming exceedingly useful for identifying patients, monitoring mental health disorders, and treatment. By using electroencephalography (EEG)-based cortical source localization along with energy landscape analysis techniques, we can statistically analyze transcranial magnetic stimulation (TMS)-invoked EEG signals, for obtaining connectivity among different brain regions at a high spatiotemporal resolution. (2) Methods: In this study, we analyze EEG-based source localized alpha wave activity in response to TMS administered to three locations, namely, the left motor cortex (49 subjects), left prefrontal cortex (27 subjects), and the posterior cerebellum, or vermis (27 subjects) by using energy landscape analysis techniques to uncover connectivity signatures. We then perform two sample t-tests and use the (5 × 10-5) Bonferroni corrected p-valued cases for reporting six reliably stable signatures. (3) Results: Vermis stimulation invoked the highest number of connectivity signatures and the left motor cortex stimulation invoked a sensorimotor network state. In total, six out of 29 reliable, stable connectivity signatures are found and discussed. (4) Conclusions: We extend previous findings to localized cortical connectivity signatures for medical applications that serve as a baseline for future dense electrode studies.


Assuntos
Encéfalo , Estimulação Magnética Transcraniana , Humanos , Encéfalo/fisiologia , Eletroencefalografia , Mapeamento Encefálico , Córtex Pré-Frontal
19.
Neuroimage ; 262: 119555, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35963506

RESUMO

Regional homogeneity (ReHo) is a measure of local functional brain connectivity that has been reported to be altered in a wide range of neuropsychiatric disorders. Computed from brain resting-state functional MRI time series, ReHo is also sensitive to fluctuations in cerebral blood flow (CBF) that in turn may be influenced by cerebrovascular health. We accessed cerebrovascular health with Framingham cardiovascular risk score (FCVRS). We hypothesize that ReHo signal may be influenced by regional CBF; and that these associations can be summarized as FCVRS→CBF→ReHo. We used three independent samples to test this hypothesis. A test-retest sample of N = 30 healthy volunteers was used for test-retest evaluation of CBF effects on ReHo. Amish Connectome Project (ACP) sample (N = 204, healthy individuals) was used to evaluate association between FCVRS and ReHo and testing if the association diminishes given CBF. The UKBB sample (N = 6,285, healthy participants) was used to replicate the effects of FCVRS on ReHo. We observed strong CBF→ReHo links (p<2.5 × 10-3) using a three-point longitudinal sample. In ACP sample, marginal and partial correlations analyses demonstrated that both CBF and FCVRS were significantly correlated with the whole-brain average (p<10-6) and regional ReHo values, with the strongest correlations observed in frontal, parietal, and temporal areas. Yet, the association between ReHo and FCVRS became insignificant once the effect of CBF was accounted for. In contrast, CBF→ReHo remained significantly linked after adjusting for FCVRS and demographic covariates (p<10-6). Analysis in N = 6,285 replicated the FCVRS→ReHo effect (p = 2.7 × 10-27). In summary, ReHo alterations in health and neuropsychiatric illnesses may be partially driven by region-specific variability in CBF, which is, in turn, influenced by cardiovascular factors.


Assuntos
Doenças Cardiovasculares , Conectoma , Encéfalo/fisiologia , Doenças Cardiovasculares/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Fatores de Risco de Doenças Cardíacas , Humanos , Imageamento por Ressonância Magnética , Fatores de Risco
20.
Hum Brain Mapp ; 43(12): 3887-3903, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35484969

RESUMO

Schizophrenia (SZ) and autism spectrum disorder (ASD) sharing overlapping symptoms have a long history of diagnostic confusion. It is unclear what their differences at a brain level are. Here, we propose a multimodality fusion classification approach to investigate their divergence in brain function and structure. Using brain functional network connectivity (FNC) calculated from resting-state fMRI data and gray matter volume (GMV) estimated from sMRI data, we classify the two disorders using the main data (335 SZ and 380 ASD patients) via an unbiased 10-fold cross-validation pipeline, and also validate the classification generalization ability on an independent cohort (120 SZ and 349 ASD patients). The classification accuracy reached up to 83.08% for the testing data and 72.10% for the independent data, significantly better than the results from using the single-modality features. The discriminative FNCs that were automatically selected primarily involved the sub-cortical, default mode, and visual domains. Interestingly, all discriminative FNCs relating to the default mode network showed an intermediate strength in healthy controls (HCs) between SZ and ASD patients. Their GMV differences were mainly driven by the frontal gyrus, temporal gyrus, and insula. Regarding these regions, the mean GMV of HC fell intermediate between that of SZ and ASD, and ASD showed the highest GMV. The middle frontal gyrus was associated with both functional and structural differences. In summary, our work reveals the unique neuroimaging characteristics of SZ and ASD that can achieve high and generalizable classification accuracy, supporting their potential as disorder-specific neural substrates of the two entwined disorders.


Assuntos
Transtorno do Espectro Autista , Esquizofrenia , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA