Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Dermatol ; 25(5): 348-54, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26660139

RESUMO

As the second most common skin malignancy, cutaneous squamous cell carcinoma (cSCC) is an increasing health concern, while its pathogenesis at molecular level remains largely unknown. We studied the expression and localisation of two homologous basement membrane (BM) collagens, types XV and XVIII, at different stages of cSCC. These collagens are involved in angiogenesis and tumorigenesis, but their role in cancer development is incompletely understood. Quantitative RT-PCR analysis revealed upregulation of collagen XVIII, but not collagen XV, in primary cSCC cells in comparison with normal human epidermal keratinocytes. In addition, the Ha-ras-transformed invasive cell line II-4 expressed high levels of collagen XVIII mRNA, indicating upregulation in the course of malignant transformation. Immunohistochemical analyses of a large human tissue microarray material showed that collagen XVIII is expressed by tumor cells from grade 1 onwards, while keratinocytes in normal skin and in premalignant lesions showed negative staining for it. Collagen XV appeared instead as deposits in the tumor stroma. Our findings in human cSCCs and in mouse cSCCs from the DMBA-TPA skin carcinogenesis model showed that collagen XVIII, but not collagen XV or the BM markers collagen IV or laminin, was selectively reduced in the tumor vasculature, and this decrease associated significantly with cancer progression. Our results demonstrate that collagens XV and XVIII are expressed in different sites of cSCC and may contribute in a distinct manner to processes related to cSCC tumorigenesis, identifying these collagens as potential biomarkers in the disease.


Assuntos
Membrana Basal/metabolismo , Carcinoma de Células Escamosas/metabolismo , Colágeno Tipo XVIII/metabolismo , Colágeno/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Camundongos
2.
Neoplasia ; 18(7): 436-46, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27435926

RESUMO

Vascular endothelial growth factor D (VEGF-D) promotes the lymph node metastasis of cancer by inducing the growth of lymphatic vasculature, but its specific roles in tumorigenesis have not been elucidated. We monitored the effects of VEGF-D in cutaneous squamous cell carcinoma (cSCC) by subjecting transgenic mice overexpressing VEGF-D in the skin (K14-mVEGF-D) and VEGF-D knockout mice to a chemical skin carcinogenesis protocol involving 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate treatments. In K14-mVEGF-D mice, tumor lymphangiogenesis was significantly increased and the frequency of lymph node metastasis was elevated in comparison with controls. Most notably, the papillomas regressed more often in K14-mVEGF-D mice than in littermate controls, resulting in a delay in tumor incidence and a remarkable reduction in the total tumor number. Skin tumor growth and metastasis were not obviously affected in the absence of VEGF-D; however, the knockout mice showed a trend for reduced lymphangiogenesis in skin tumors and in the untreated skin. Interestingly, K14-mVEGF-D mice showed an altered immune response in skin tumors. This consisted of the reduced accumulation of macrophages, mast cells, and CD4(+) T-cells and an increase of cytotoxic CD8(+) T-cells. Cytokine profiling by flow cytometry and quantitative real time PCR revealed that elevated VEGF-D expression results in an attenuated Th2 response and promotes M1/Th1 and Th17 polarization in the early stage of skin carcinogenesis, leading to an anti-tumoral immune environment and the regression of primary tumors. Our data suggest that VEGF-D may be beneficial in early-stage tumors since it suppresses the pro-tumorigenic inflammation, while at later stages VEGF-D-induced tumor lymphatics provide a route for metastasis.


Assuntos
Carcinógenos/toxicidade , Carcinoma de Células Escamosas/patologia , Linfonodos/irrigação sanguínea , Linfangiogênese/efeitos dos fármacos , Neoplasias Cutâneas/patologia , Fator D de Crescimento do Endotélio Vascular/metabolismo , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Escamosas/induzido quimicamente , Citometria de Fluxo , Metástase Linfática , Vasos Linfáticos/patologia , Contagem de Linfócitos , Macrófagos/imunologia , Mastócitos/imunologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Pele/patologia , Neoplasias Cutâneas/induzido quimicamente , Acetato de Tetradecanoilforbol/toxicidade
3.
J Invest Dermatol ; 135(7): 1882-1892, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25789706

RESUMO

Keratinocyte-derived skin cancer, cutaneous squamous cell carcinoma (cSCC), is the most common metastatic skin cancer. We have examined the role of Eph/ephrin signaling in the progression of cSCC. Analysis of the expression of EPH and EFN families in cSCC cells and normal epidermal keratinocytes revealed overexpression of EPHB2 mRNA in cSCC cells and cSCC tumors in vivo. Tumor cell-specific overexpression of EphB2 was detected in human cSCCs and in chemically induced mouse cSCCs with immunohistochemistry, whereas the expression of EphB2 was low in premalignant lesions and normal skin. Knockdown of EphB2 expression in cSCC cells suppressed growth and vascularization of cSCC xenografts in vivo and inhibited proliferation, migration, and invasion of cSCC cells in culture. EphB2 knockdown downregulated expression of genes associated with biofunctions cell viability, migration of tumor cells, and invasion of tumor cells. Among the genes most downregulated by EphB2 knockdown were MMP1 and MMP13. Moreover, activation of EphB2 signaling by ephrin-B2-Fc enhanced production of invasion proteinases matrix metalloproteinase-13 (MMP13) and MMP1, and invasion of cSCC cells. These findings provide mechanistic evidence for the role of EphB2 in the early progression of cSCC to the invasive stage and identify EphB2 as a putative therapeutic target in this invasive skin cancer.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , RNA Mensageiro/genética , Receptor EphB2/genética , Neoplasias Cutâneas/genética , Animais , Carcinoma de Células Escamosas/fisiopatologia , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Regulação para Baixo , Efrina-B2/metabolismo , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Knockout , Distribuição Aleatória , Transdução de Sinais , Neoplasias Cutâneas/patologia , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA