Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Genet ; 61(9): 908-913, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-38955476

RESUMO

BACKGROUND: Transport protein particle (TRAPP) is a multiprotein complex that functions in localising proteins to the Golgi compartment. The TRAPPC11 subunit has been implicated in diseases affecting muscle, brain, eye and to some extent liver. We present three patients who are compound heterozygotes for a missense variant and a structural variant in the TRAPPC11 gene. TRAPPC11 structural variants have not yet been described in association with a disease. In order to reveal the estimated genesis of identified structural variants, we performed sequencing of individual breakpoint junctions and analysed the extent of homology and the presence of repetitive elements in and around the breakpoints. METHODS: Biochemical methods including isoelectric focusing on serum transferrin and apolipoprotein C-III, as well as mitochondrial respiratory chain complex activity measurements, were used. Muscle biopsy samples underwent histochemical analysis. Next-generation sequencing was employed for identifying sequence variants associated with neuromuscular disorders, and Sanger sequencing was used to confirm findings. RESULTS: We suppose that non-homologous end joining is a possible mechanism of deletion origin in two patients and non-allelic homologous recombination in one patient. Analyses of mitochondrial function performed in patients' skeletal muscles revealed an imbalance of mitochondrial metabolism, which worsens with age and disease progression. CONCLUSION: Our results contribute to further knowledge in the field of neuromuscular diseases and mutational mechanisms. This knowledge is important for understanding the molecular nature of human diseases and allows us to improve strategies for identifying disease-causing mutations.


Assuntos
Distrofias Musculares , Adulto , Criança , Feminino , Humanos , Masculino , Deleção de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/patologia , Mutação de Sentido Incorreto/genética
2.
J Inherit Metab Dis ; 47(2): 220-229, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38375550

RESUMO

Carbamoyl phosphate synthetase 1 (CPS1) and ornithine transcarbamylase (OTC) deficiencies are rare urea cycle disorders, which can lead to life-threatening hyperammonemia. Liver transplantation (LT) provides a cure and offers an alternative to medical treatment and life-long dietary restrictions with permanent impending risk of hyperammonemia. Nevertheless, in most patients, metabolic aberrations persist after LT, especially low plasma citrulline levels, with questionable clinical impact. So far, little is known about these alterations and there is no consensus, whether l-citrulline substitution after LT improves patients' symptoms and outcomes. In this multicentre, retrospective, observational study of 24 patients who underwent LT for CPS1 (n = 11) or OTC (n = 13) deficiency, 25% did not receive l-citrulline or arginine substitution. Correlation analysis revealed no correlation between substitution dosage and citrulline levels (CPS1, p = 0.8 and OTC, p = 1). Arginine levels after liver transplantation were normal after LT independent of citrulline substitution. Native liver survival had no impact on mental impairment (p = 0.67). Regression analysis showed no correlation between l-citrulline substitution and failure to thrive (p = 0.611) or neurological outcome (p = 0.701). Peak ammonia had a significant effect on mental impairment (p = 0.017). Peak plasma ammonia levels correlate with mental impairment after LT in CPS1 and OTC deficiency. Growth and intellectual impairment after LT are not significantly associated with l-citrulline substitution.


Assuntos
Hiperamonemia , Transplante de Fígado , Doença da Deficiência de Ornitina Carbomoiltransferase , Humanos , Doença da Deficiência de Ornitina Carbomoiltransferase/cirurgia , Hiperamonemia/tratamento farmacológico , Citrulina , Carbamoil-Fosfato/metabolismo , Carbamoil-Fosfato/uso terapêutico , Amônia/metabolismo , Estudos Retrospectivos , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Arginina/uso terapêutico , Ornitina Carbamoiltransferase
3.
Mol Genet Metab ; 139(3): 107610, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245379

RESUMO

PMM2-CDG is the most common defect among the congenital disorders of glycosylation. In order to investigate the effect of hypoglycosylation on important cellular pathways, we performed extensive biochemical studies on skin fibroblasts of PMM2-CDG patients. Among others, acylcarnitines, amino acids, lysosomal proteins, organic acids and lipids were measured, which all revealed significant abnormalities. There was an increased expression of acylcarnitines and amino acids associated with increased amounts of calnexin, calreticulin and protein-disulfid-isomerase in combination with intensified amounts of ubiquitinylated proteins. Lysosomal enzyme activities were widely decreased as well as citrate and pyruvate levels indicating mitochondrial dysfunction. Main lipid classes such as phosphatidylethanolamine, cholesterol or alkyl-phosphatidylcholine, as well as minor lipid species like hexosylceramide, lysophosphatidylcholines or phosphatidylglycerol, were abnormal. Biotinidase and catalase activities were severely reduced. In this study we discuss the impact of metabolite abnormalities on the phenotype of PMM2-CDG. In addition, based on our data we propose new and easy-to-implement therapeutic approaches for PMM2-CDG patients.


Assuntos
Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases) , Humanos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/terapia , Defeitos Congênitos da Glicosilação/metabolismo , Glicosilação , Fosfotransferases (Fosfomutases)/genética , Aminoácidos/metabolismo , Lipídeos
4.
Mol Genet Metab ; 139(3): 107624, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37348148

RESUMO

Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive genetic disorder affecting the biosynthesis of dopamine, a precursor of both norepinephrine and epinephrine, and serotonin. Diagnosis is based on the analysis of CSF or plasma metabolites, AADC activity in plasma and genetic testing for variants in the DDC gene. The exact prevalence of AADC deficiency, the number of patients, and the variant and genotype prevalence are not known. Here, we present the DDC variant (n = 143) and genotype (n = 151) prevalence of 348 patients with AADC deficiency, 121 of whom were previously not reported. In addition, we report 26 new DDC variants, classify them according to the ACMG/AMP/ACGS recommendations for pathogenicity and score them based on the predicted structural effect. The splice variant c.714+4A>T, with a founder effect in Taiwan and China, was the most common variant (allele frequency = 32.4%), and c.[714+4A>T];[714+4A>T] was the most common genotype (genotype frequency = 21.3%). Approximately 90% of genotypes had variants classified as pathogenic or likely pathogenic, while 7% had one VUS allele and 3% had two VUS alleles. Only one benign variant was reported. Homozygous and compound heterozygous genotypes were interpreted in terms of AADC protein and categorized as: i) devoid of full-length AADC, ii) bearing one type of AADC homodimeric variant or iii) producing an AADC protein population composed of two homodimeric and one heterodimeric variant. Based on structural features, a score was attributed for all homodimers, and a tentative prediction was advanced for the heterodimer. Almost all AADC protein variants were pathogenic or likely pathogenic.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Descarboxilases de Aminoácido-L-Aromático , Humanos , Prevalência , Dopamina/metabolismo , Genótipo , Erros Inatos do Metabolismo dos Aminoácidos/epidemiologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Aminoácidos/genética
5.
Clin Genet ; 104(5): 542-553, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37526466

RESUMO

Limb girdle muscular dystrophies (LGMD) are a genetically heterogeneous group of muscular dystrophies. The study presents an overview of molecular characteristics of a large cohort of LGMD patients who are representative of the Czech LGMD population. We present 226 LGMD probands in which 433 mutant alleles carrying 157 different variants with a supposed pathogenic effect were identified. Fifty-four variants have been described only in the Czech LGMD population so far. LGMD R1 caplain3-related is the most frequent subtype of LGMD involving 53.1% of patients with genetically confirmed LGMD, followed by LGMD R9 FKRP-related (11.1%), and LGMD R12 anoctamin5-related (7.1%). If we consider identified variants, then all but five were small-scale variants. One large gene deletion was identified in the LAMA2 gene and two deletions in each of CAPN3 and SGCG. We performed comparison our result with other published studies. The results obtained in the Czech LGMD population clearly differ from the outcome of other LGMD populations in two aspects-we have a more significant proportion of patients with LGMD R1 calpain3-related and a smaller proportion of LGMD R2 dysferlin-related.

6.
Ann Neurol ; 92(2): 292-303, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616651

RESUMO

OBJECTIVE: Glycine encephalopathy, also known as nonketotic hyperglycinemia (NKH), is an inherited neurometabolic disorder with variable clinical course and severity, ranging from infantile epileptic encephalopathy to psychiatric disorders. A precise phenotypic characterization and an evaluation of predictive approaches are needed. METHODS: Longitudinal clinical and biochemical data of 25 individuals with NKH from the patient registry of the International Working Group on Neurotransmitter Related Disorders were studied with in silico analyses, pathogenicity scores, and molecular modeling of GLDC and AMT variants. RESULTS: Symptom onset (p < 0.01) and diagnosis occur earlier in life in severe NKH (p < 0.01). Presenting symptoms affect the age at diagnosis. Psychiatric problems occur predominantly in attenuated NKH. Onset age ≥ 3 months (66% specificity, 100% sensitivity, area under the curve [AUC] = 0.87) and cerebrospinal fluid (CSF)/plasma glycine ratio ≤ 0.09 (57% specificity, 100% sensitivity, AUC = 0.88) are sensitive indicators for attenuated NKH, whereas CSF glycine concentration ≥ 116.5µmol/l (100% specificity, 93% sensitivity, AUC = 0.97) and CSF/plasma glycine ratio ≥ 0.15 (100% specificity, 64% sensitivity, AUC = 0.88) are specific for severe forms. A ratio threshold of 0.128 discriminates the overlapping range. We present 10 new GLDC variants. Two mild variants resulted in attenuated, whereas 2 severe variants or 1 mild and 1 severe variant led to severe phenotype. Based on clinical, biochemical, and genetic parameters, we propose a severity prediction model. INTERPRETATION: This study widens the phenotypic spectrum of attenuated NKH and expands the number of pathogenic variants. The multiparametric approach provides a promising tool to predict disease severity, helping to improve clinical management strategies. ANN NEUROL 2022;92:292-303.


Assuntos
Hiperglicinemia não Cetótica , Glicina/líquido cefalorraquidiano , Glicina/genética , Humanos , Hiperglicinemia não Cetótica/diagnóstico , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/patologia , Mutação , Fenótipo
7.
Am J Hum Genet ; 104(5): 835-846, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982613

RESUMO

Phosphoglucomutase 1 (PGM1) encodes the metabolic enzyme that interconverts glucose-6-P and glucose-1-P. Mutations in PGM1 cause impairment in glycogen metabolism and glycosylation, the latter manifesting as a congenital disorder of glycosylation (CDG). This unique metabolic defect leads to abnormal N-glycan synthesis in the endoplasmic reticulum (ER) and the Golgi apparatus (GA). On the basis of the decreased galactosylation in glycan chains, galactose was administered to individuals with PGM1-CDG and was shown to markedly reverse most disease-related laboratory abnormalities. The disease and treatment mechanisms, however, have remained largely elusive. Here, we confirm the clinical benefit of galactose supplementation in PGM1-CDG-affected individuals and obtain significant insights into the functional and biochemical regulation of glycosylation. We report here that, by using tracer-based metabolomics, we found that galactose treatment of PGM1-CDG fibroblasts metabolically re-wires their sugar metabolism, and as such replenishes the depleted levels of galactose-1-P, as well as the levels of UDP-glucose and UDP-galactose, the nucleotide sugars that are required for ER- and GA-linked glycosylation, respectively. To this end, we further show that the galactose in UDP-galactose is incorporated into mature, de novo glycans. Our results also allude to the potential of monosaccharide therapy for several other CDG.


Assuntos
Defeitos Congênitos da Glicosilação/metabolismo , Fibroblastos/metabolismo , Galactose/administração & dosagem , Fosfoglucomutase/deficiência , Uridina Difosfato Galactose/metabolismo , Uridina Difosfato Glucose/metabolismo , Células Cultivadas , Estudos de Coortes , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Glicosilação , Humanos
8.
Mol Genet Metab ; 133(4): 397-399, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34140212

RESUMO

PMM2-CDG is the most common congenital disorder of glycosylation (CDG) accounting for almost 65% of known CDG cases affecting N-glycosylation. Abnormalities in N-glycosylation could have a negative impact on many endocrine axes. There is very little known on the effect of impaired N-glycosylation on the hypothalamic-pituitary-adrenal axis function and whether CDG patients are at risk of secondary adrenal insufficiency and decreased adrenal cortisol production. Cortisol and ACTH concentrations were simultaneously measured between 7:44 am to 1 pm in forty-three subjects (20 female, median age 12.8 years, range 0.1 to 48.6 years) participating in an ongoing international, multi-center Natural History study for PMM2-CDG (ClinicalTrials.gov Identifier: NCT03173300). Of the 43 subjects, 11 (25.6%) had cortisol below 5 µg/dl and low to normal ACTH levels, suggestive of secondary adrenal insufficiency. Two of the 11 subjects have confirmed central adrenal insufficiency and are on hydrocortisone replacement and/or stress dosing during illness; 3 had normal and 1 had subnormal cortisol response to ACTH low-dose stimulation test but has not yet been started on therapy; the remaining 5 have upcoming stimulation testing planned. Our findings suggest that patients with PMM2-CDG may be at risk for adrenal insufficiency. Monitoring of morning cortisol and ACTH levels should be part of the standard care in patients with PMM2-CDG.


Assuntos
Insuficiência Adrenal/diagnóstico , Insuficiência Adrenal/fisiopatologia , Fosfotransferases (Fosfomutases)/sangue , Adolescente , Insuficiência Adrenal/etiologia , Adulto , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação , Feminino , Glicosilação , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Fosfotransferases (Fosfomutases)/genética , Sistema Hipófise-Suprarrenal/fisiologia , Estudos Prospectivos , Fatores de Risco , Adulto Jovem
9.
J Sleep Res ; 30(2): e13051, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32524698

RESUMO

Leber hereditary optic neuropathy and Dominant optic atrophy are associated with a selective loss of retinal ganglion cells (RGC). A subtype of RGC is responsible for light-dependent physiological processes. The aim of our study was to evaluate both subjective and objective sleep parameters in 36 (18 males; mean age 33.8 ± 16.7) symptomatic/asymptomatic subjects with Leber hereditary optic neuropathy and dominant optic atrophy. The Pittsburgh Sleep Quality Index (PSQI), the Epworth Sleepiness Scale (ESS) and nocturnal polysomnography were used to assess sleep disturbances and sleep quality. The questionnaires indicated significantly worse sleep quality (PSQI > 5; average 7.7 ± 3.8) in 21 (70%) and excessive daytime sleepiness (ESS > 10; average 6.3 ± 5.8) in six (20%) individuals. Nocturnal polysomnography has not revealed any significant changes of sleep structure. Rapid eye movement (REM) sleep without atonia was observed in two patients with Leber hereditary optic neuropathy. Obstructive sleep apnea was noted in eight cases. No correlation between subjective and polysomnographic data and no differences between symptomatic and asymptomatic groups were observed. None of the subjects fulfilled criteria for a circadian sleep disorder. In both symptomatic and asymptomatic individuals, a subjective decrease of the quality of sleep and wakefulness was noted without any correlation on polysomnography.


Assuntos
Atrofia Óptica Hereditária de Leber/patologia , Doenças do Nervo Óptico/complicações , Polissonografia/métodos , Adolescente , Adulto , Criança , DNA Mitocondrial/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
J Inherit Metab Dis ; 44(3): 566-592, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33595124

RESUMO

Isolated methylmalonic acidaemia (MMA) and propionic acidaemia (PA) are rare inherited metabolic diseases. Six years ago, a detailed evaluation of the available evidence on diagnosis and management of these disorders has been published for the first time. The article received considerable attention, illustrating the importance of an expert panel to evaluate and compile recommendations to guide rare disease patient care. Since that time, a growing body of evidence on transplant outcomes in MMA and PA patients and use of precursor free amino acid mixtures allows for updates of the guidelines. In this article, we aim to incorporate this newly published knowledge and provide a revised version of the guidelines. The analysis was performed by a panel of multidisciplinary health care experts, who followed an updated guideline development methodology (GRADE). Hence, the full body of evidence up until autumn 2019 was re-evaluated, analysed and graded. As a result, 21 updated recommendations were compiled in a more concise paper with a focus on the existing evidence to enable well-informed decisions in the context of MMA and PA patient care.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Acidemia Propiônica/diagnóstico , Acidemia Propiônica/terapia , Gerenciamento Clínico , Humanos
11.
J Inherit Metab Dis ; 44(4): 1070-1082, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33443316

RESUMO

Inherited monoamine neurotransmitter disorders (iMNDs) are rare disorders with clinical manifestations ranging from mild infantile hypotonia, movement disorders to early infantile severe encephalopathy. Neuroimaging has been reported as non-specific. We systematically analyzed brain MRIs in order to characterize and better understand neuroimaging changes and to re-evaluate the diagnostic role of brain MRI in iMNDs. 81 MRIs of 70 patients (0.1-52.9 years, 39 patients with tetrahydrobiopterin deficiencies, 31 with primary disorders of monoamine metabolism) were retrospectively analyzed and clinical records reviewed. 33/70 patients had MRI changes, most commonly atrophy (n = 24). Eight patients, six with dihydropteridine reductase deficiency (DHPR), had a common pattern of bilateral parieto-occipital and to a lesser extent frontal and/or cerebellar changes in arterial watershed zones. Two patients imaged after acute severe encephalopathy had signs of profound hypoxic-ischemic injury and a combination of deep gray matter and watershed injury (aromatic l-amino acid decarboxylase (AADCD), tyrosine hydroxylase deficiency (THD)). Four patients had myelination delay (AADCD; THD); two had changes characteristic of post-infantile onset neuronal disease (AADCD, monoamine oxidase A deficiency), and nine T2-hyperintensity of central tegmental tracts. iMNDs are associated with MRI patterns consistent with chronic effects of a neuronal disorder and signs of repetitive injury to cerebral and cerebellar watershed areas, in particular in DHPRD. These will be helpful in the (neuroradiological) differential diagnosis of children with unknown disorders and monitoring of iMNDs. We hypothesize that deficiency of catecholamines and/or tetrahydrobiopterin increase the incidence of and the CNS susceptibility to vascular dysfunction.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico por imagem , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
12.
J Inherit Metab Dis ; 44(1): 148-163, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32681750

RESUMO

Phosphoglucomutase 1 (PGM1) deficiency is a rare genetic disorder that affects glycogen metabolism, glycolysis, and protein glycosylation. Previously known as GSD XIV, it was recently reclassified as a congenital disorder of glycosylation, PGM1-CDG. PGM1-CDG usually manifests as a multisystem disease. Most patients present as infants with cleft palate, liver function abnormalities and hypoglycemia, but some patients present in adulthood with isolated muscle involvement. Some patients develop life-threatening cardiomyopathy. Unlike most other CDG, PGM1-CDG has an effective treatment option, d-galactose, which has been shown to improve many of the patients' symptoms. Therefore, early diagnosis and initiation of treatment for PGM1-CDG patients are crucial decisions. In this article, our group of international experts suggests diagnostic, follow-up, and management guidelines for PGM1-CDG. These guidelines are based on the best available evidence-based data and experts' opinions aiming to provide a practical resource for health care providers to facilitate successful diagnosis and optimal management of PGM1-CDG patients.


Assuntos
Gerenciamento Clínico , Galactose/uso terapêutico , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/tratamento farmacológico , Adulto , Cardiomiopatias/complicações , Cardiomiopatias/patologia , Fissura Palatina/complicações , Fissura Palatina/patologia , Consenso , Doença de Depósito de Glicogênio/complicações , Doença de Depósito de Glicogênio/enzimologia , Humanos , Hipoglicemia/complicações , Lactente , Cooperação Internacional , Doenças Musculares/complicações , Doenças Musculares/patologia
13.
J Inherit Metab Dis ; 44(6): 1489-1502, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34245036

RESUMO

Inherited disorders of neurotransmitter metabolism are a group of rare diseases, which are caused by impaired synthesis, transport, or degradation of neurotransmitters or cofactors and result in various degrees of delayed or impaired psychomotor development. To assess the effect of neurotransmitter deficiencies on intelligence, quality of life, and behavior, the data of 148 patients in the registry of the International Working Group on Neurotransmitter Related Disorders (iNTD) was evaluated using results from standardized age-adjusted tests and questionnaires. Patients with a primary disorder of monoamine metabolism had lower IQ scores (mean IQ 58, range 40-100) within the range of cognitive impairment (<70) compared to patients with a BH4 deficiency (mean IQ 84, range 40-129). Short attention span and distractibility were most frequently mentioned by parents, while patients reported most frequently anxiety and distractibility when asked for behavioral traits. In individuals with succinic semialdehyde dehydrogenase deficiency, self-stimulatory behaviors were commonly reported by parents, whereas in patients with dopamine transporter deficiency, DNAJC12 deficiency, and monoamine oxidase A deficiency, self-injurious or mutilating behaviors have commonly been observed. Phobic fears were increased in patients with 6-pyruvoyltetrahydropterin synthase deficiency, while individuals with sepiapterin reductase deficiency frequently experienced communication and sleep difficulties. Patients with BH4 deficiencies achieved significantly higher quality of life as compared to other groups. This analysis of the iNTD registry data highlights: (a) difference in IQ and subdomains of quality of life between BH4 deficiencies and primary neurotransmitter-related disorders and (b) previously underreported behavioral traits.


Assuntos
Neurotransmissores/deficiência , Fenótipo , Qualidade de Vida , Adolescente , Adulto , Comportamento , Criança , Pré-Escolar , Disfunção Cognitiva/etiologia , Feminino , Humanos , Lactente , Inteligência , Internacionalidade , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Adulto Jovem
14.
Brain ; 143(8): 2437-2453, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32761064

RESUMO

In pleiotropic diseases, multiple organ systems are affected causing a variety of clinical manifestations. Here, we report a pleiotropic disorder with a unique constellation of neurological, endocrine, exocrine, and haematological findings that is caused by biallelic MADD variants. MADD, the mitogen-activated protein kinase (MAPK) activating death domain protein, regulates various cellular functions, such as vesicle trafficking, activity of the Rab3 and Rab27 small GTPases, tumour necrosis factor-α (TNF-α)-induced signalling and prevention of cell death. Through national collaboration and GeneMatcher, we collected 23 patients with 21 different pathogenic MADD variants identified by next-generation sequencing. We clinically evaluated the series of patients and categorized the phenotypes in two groups. Group 1 consists of 14 patients with severe developmental delay, endo- and exocrine dysfunction, impairment of the sensory and autonomic nervous system, and haematological anomalies. The clinical course during the first years of life can be potentially fatal. The nine patients in Group 2 have a predominant neurological phenotype comprising mild-to-severe developmental delay, hypotonia, speech impairment, and seizures. Analysis of mRNA revealed multiple aberrant MADD transcripts in two patient-derived fibroblast cell lines. Relative quantification of MADD mRNA and protein in fibroblasts of five affected individuals showed a drastic reduction or loss of MADD. We conducted functional tests to determine the impact of the variants on different pathways. Treatment of patient-derived fibroblasts with TNF-α resulted in reduced phosphorylation of the extracellular signal-regulated kinases 1 and 2, enhanced activation of the pro-apoptotic enzymes caspase-3 and -7 and increased apoptosis compared to control cells. We analysed internalization of epidermal growth factor in patient cells and identified a defect in endocytosis of epidermal growth factor. We conclude that MADD deficiency underlies multiple cellular defects that can be attributed to alterations of TNF-α-dependent signalling pathways and defects in vesicular trafficking. Our data highlight the multifaceted role of MADD as a signalling molecule in different organs and reveal its physiological role in regulating the function of the sensory and autonomic nervous system and endo- and exocrine glands.


Assuntos
Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Deficiências do Desenvolvimento/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Doenças do Sistema Nervoso/genética , Humanos , Mutação , Fenótipo , Transporte Proteico/genética , Transdução de Sinais/genética
15.
BMC Ophthalmol ; 21(1): 249, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090370

RESUMO

BACKGROUND: ALG3-CDG is a rare autosomal recessive disease. It is characterized by deficiency of alpha-1,3-mannosyltransferase caused by pathogenic variants in the ALG3 gene. Patients manifest with severe neurologic, cardiac, musculoskeletal and ophthalmic phenotype in combination with dysmorphic features, and almost half of them die before or during the neonatal period. CASE PRESENTATION: A 23 months-old girl presented with severe developmental delay, epilepsy, cortical atrophy, cerebellar vermis hypoplasia and ocular impairment. Facial dysmorphism, clubfeet and multiple joint contractures were observed already at birth. Transferrin isoelectric focusing revealed a type 1 pattern. Funduscopy showed hypopigmentation and optic disc pallor. Profound retinal ganglion cell loss and inner retinal layer thinning was documented on spectral-domain optical coherence tomography imaging. The presence of optic nerve hypoplasia was also supported by magnetic resonance imaging. A gene panel based next-generation sequencing and subsequent Sanger sequencing identified compound heterozygosity for two novel variants c.116del p.(Pro39Argfs*40) and c.1060 C > T p.(Arg354Cys) in ALG3. CONCLUSIONS: Our study expands the spectrum of pathogenic variants identified in ALG3. Thirty-three variants in 43 subjects with ALG3-CDG have been reported. Literature review shows that visual impairment in ALG3-CDG is most commonly linked to optic nerve hypoplasia.


Assuntos
Defeitos Congênitos da Glicosilação , Degeneração Retiniana , Pré-Escolar , Defeitos Congênitos da Glicosilação/genética , Olho , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Manosiltransferases/genética , Fenótipo
16.
Hum Mol Genet ; 27(17): 3029-3045, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29878199

RESUMO

Genomics methodologies have significantly improved elucidation of Mendelian disorders. The combination with high-throughput functional-omics technologies potentiates the identification and confirmation of causative genetic variants, especially in singleton families of recessive inheritance. In a cohort of 99 individuals with abnormal Golgi glycosylation, 47 of which being unsolved, glycomics profiling was performed of total plasma glycoproteins. Combination with whole-exome sequencing in 31 cases revealed a known genetic defect in 15 individuals. To identify additional genetic factors, hierarchical clustering of the plasma glycomics data was done, which indicated a subgroup of four patients that shared a unique glycomics signature of hybrid type N-glycans. In two siblings, compound heterozygous mutations were found in SLC10A7, a gene of unknown function in human. These included a missense mutation that disrupted transmembrane domain 4 and a mutation in a splice acceptor site resulting in skipping of exon 9. The two other individuals showed a complete loss of SLC10A7 mRNA. The patients' phenotype consisted of amelogenesis imperfecta, skeletal dysplasia, and decreased bone mineral density compatible with osteoporosis. The patients' phenotype was mirrored in SLC10A7 deficient zebrafish. Furthermore, alizarin red staining of calcium deposits in zebrafish morphants showed a strong reduction in bone mineralization. Cell biology studies in fibroblasts of affected individuals showed intracellular mislocalization of glycoproteins and a defect in post-Golgi transport of glycoproteins to the cell membrane. In contrast to yeast, human SLC10A7 localized to the Golgi. Our combined data indicate an important role for SLC10A7 in bone mineralization and transport of glycoproteins to the extracellular matrix.


Assuntos
Doenças do Desenvolvimento Ósseo/etiologia , Calcificação Fisiológica , Defeitos Congênitos da Glicosilação/complicações , Genômica , Glicômica , Mutação , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Simportadores/genética , Adulto , Animais , Doenças do Desenvolvimento Ósseo/metabolismo , Doenças do Desenvolvimento Ósseo/patologia , Células Cultivadas , Estudos de Coortes , Exoma , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Glicosilação , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Humanos , Lactente , Masculino , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Linhagem , Fenótipo , Transporte Proteico , Simportadores/metabolismo , Adulto Jovem , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
17.
J Inherit Metab Dis ; 43(4): 694-700, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32216104

RESUMO

Congenital disorders of glycosylation (CDG) represent a wide range of >140 inherited metabolic diseases, continually expanding not only with regards to the number of newly identified causative genes, but also the heterogeneity of the clinical and molecular presentations within each subtype. The deficiency of ATP6AP1, an accessory subunit of the vacuolar H+ -ATPase, is a recently characterised N- and O-glycosylation defect manifesting with immunodeficiency, hepatopathy and cognitive impairment. At the cellular level, the latest studies demonstrate a complex disturbance of metabolomics involving peroxisomal function and lipid homeostasis in the patients. Our study delineates a case of two severely affected siblings with a new hemizygous variant c.221T>C (p.L74P) in ATP6AP1 gene, who both died due to liver failure before reaching 1 year of age. We bring novel pathobiochemical observations including the finding of increased reactive oxygen species in the cultured fibroblasts from the older boy, a striking copper accumulation in his liver, as well as describe the impact of the mutation on the protein in different organs, showing a tissue-specific pattern of ATP6AP1 level and its posttranslational modification.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Cobre/metabolismo , Síndromes de Imunodeficiência/genética , Hepatopatias/genética , ATPases Vacuolares Próton-Translocadoras/genética , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/metabolismo , Evolução Fatal , Humanos , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/metabolismo , Lactente , Hepatopatias/diagnóstico , Hepatopatias/metabolismo , Masculino , Metabolômica , Mutação , Estresse Oxidativo/genética , Fenótipo , Processamento de Proteína Pós-Traducional , Irmãos , ATPases Vacuolares Próton-Translocadoras/deficiência
18.
J Inherit Metab Dis ; 43(4): 671-693, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32266963

RESUMO

Mannose phosphate isomerase-congenital disorder of glycosylation (MPI-CDG) deficiency is a rare subtype of congenital disorders of protein N-glycosylation. It is characterised by deficiency of MPI caused by pathogenic variants in MPI gene. The manifestation of MPI-CDG is different from other CDGs as the patients suffer dominantly from gastrointestinal and hepatic involvement whereas they usually do not present intellectual disability or neurological impairment. It is also one of the few treatable subtypes of CDGs with proven effect of oral mannose. This article covers a complex review of the literature and recommendations for the management of MPI-CDG with an emphasis on the clinical aspect of the disease. A team of international experts elaborated summaries and recommendations for diagnostics, differential diagnosis, management, and treatment of each system/organ involvement based on evidence-based data and experts' opinions. Those guidelines also reveal more questions about MPI-CDG which need to be further studied.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/terapia , Manose-6-Fosfato Isomerase/deficiência , Defeitos Congênitos da Glicosilação/enzimologia , Consenso , Gerenciamento Clínico , Humanos , Manose-6-Fosfato Isomerase/genética , Guias de Prática Clínica como Assunto
19.
BMC Pediatr ; 20(1): 41, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996177

RESUMO

BACKGROUND: Maternally inherited complex I deficiencies due to mutations in MT-ND genes represent a heterogeneous group of multisystem mitochondrial disorders (MD) with a unfavourable prognosis. The aim of the study was to characterize the impact of the mutations in MT-ND genes, including the novel m.13091 T > C variant, on the course of the disease, and to analyse the activities of respiratory chain complexes, the amount of protein subunits, and the mitochondrial energy-generating system (MEGS) in available muscle biopsies and cultivated fibroblasts. METHODS: The respiratory chain complex activities were measured by spectrophotometry, MEGS were analysed using radiolabelled substrates, and protein amount by SDS-PAGE or BN-PAGE in muscle or fibroblasts. RESULTS: In our cohort of 106 unrelated families carrying different mtDNA mutations, we found heteroplasmic mutations in the genes MT-ND1, MT-ND3, and MT-ND5, including the novel variant m.13091 T > C, in 13 patients with MD from 12 families. First symptoms developed between early childhood and adolescence and progressed to multisystem disease with a phenotype of Leigh or MELAS syndromes. MRI revealed bilateral symmetrical involvement of deep grey matter typical of Leigh syndrome in 6 children, cortical/white matter stroke-like lesions suggesting MELAS syndrome in 3 patients, and a combination of cortico-subcortical lesions and grey matter involvement in 4 patients. MEGS indicated mitochondrial disturbances in all available muscle samples, as well as a significantly decreased oxidation of [1-14C] pyruvate in fibroblasts. Spectrophotometric analyses revealed a low activity of complex I and/or complex I + III in all muscle samples except one, but the activities in fibroblasts were mostly normal. No correlation was found between complex I activities and mtDNA mutation load, but higher levels of heteroplasmy were generally found in more severely affected patients. CONCLUSIONS: Maternally inherited complex I deficiencies were found in 11% of families with mitochondrial diseases in our region. Six patients manifested with Leigh, three with MELAS. The remaining four patients presented with an overlap between these two syndromes. MEGS, especially the oxidation of [1-14C] pyruvate in fibroblasts might serve as a sensitive indicator of functional impairment due to MT-ND mutations. Early onset of the disease and higher level of mtDNA heteroplasmy were associated with a worse prognosis.


Assuntos
DNA Mitocondrial , Complexo I de Transporte de Elétrons/deficiência , Doença de Leigh/genética , Síndrome MELAS/genética , Doenças Mitocondriais/genética , Mutação , Adolescente , Adulto , Idade de Início , Biópsia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Células Cultivadas , Criança , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Músculo Esquelético/metabolismo
20.
Prague Med Rep ; 121(3): 153-162, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33030144

RESUMO

Dominantly inherited mutations in COMP gene encoding cartilage oligomeric matrix protein may cause two dwarfing skeletal dysplasias, milder multiple epiphyseal dysplasia (MED) and more severe pseudoachondroplasia (PSACH). We studied the phenotype and X-rays of 11 patients from 5 unrelated families with different COMP mutations. Whole exome and/or Sangers sequencing were used for molecular analyses. Four to ten X-ray images of hands hips, knees or spine were available for each patient for retrospective analyses. Eight patients with MED have mutation c.1220G>A and 3 children with PSACH mutations c.1359C>A, c.1336G>A, or the novel mutation c.1126G>T in COMP. Progressive failure in growth developed in all patients from early childhood and resulted in short stature < 3rd percentile in 7 patients and very short stature < 1st percentile in four. Most patients had joint pain since childhood, severe stiffness in shoulders and elbows but increased mobility in wrists. Six children had bowlegs and two had knock knees. In all patients, X-rays of hands, hips and knees showed progressive, age-dependent skeletal involvement more pronounced in the epiphyses of long rather than short tubular bones. Anterior elongation and biconvex configuration of vertebral bodies were more conspicuous for kids. Six children had correction of knees and two adults had hip replacement. Skeletal and joint impairment in patients with MED and PSACH due to COMP mutation start in early childhood. Although the clinical severity is mutation and age dependent, many symptoms represent a continuous phenotypic spectrum between both diseases. Most patients may benefit from orthopaedic surgeries.


Assuntos
Proteína de Matriz Oligomérica de Cartilagem , Mutação , Osteocondrodisplasias , Acondroplasia , Adulto , Proteína de Matriz Oligomérica de Cartilagem/genética , Criança , Pré-Escolar , Humanos , Proteínas Matrilinas/genética , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Estudos Retrospectivos , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA