Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Br J Clin Pharmacol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589944

RESUMO

AIMS: The COVID-19 pandemic created unprecedented pressure on healthcare services. This study investigates whether disease-modifying antirheumatic drug (DMARD) safety monitoring was affected during the COVID-19 pandemic. METHODS: A population-based cohort study was conducted using the OpenSAFELY platform to access electronic health record data from 24.2 million patients registered at general practices using TPP's SystmOne software. Patients were included for further analysis if prescribed azathioprine, leflunomide or methotrexate between November 2019 and July 2022. Outcomes were assessed as monthly trends and variation between various sociodemographic and clinical groups for adherence with standard safety monitoring recommendations. RESULTS: An acute increase in the rate of missed monitoring occurred across the study population (+12.4 percentage points) when lockdown measures were implemented in March 2020. This increase was more pronounced for some patient groups (70-79 year-olds: +13.7 percentage points; females: +12.8 percentage points), regions (North West: +17.0 percentage points), medications (leflunomide: +20.7 percentage points) and monitoring tests (blood pressure: +24.5 percentage points). Missed monitoring rates decreased substantially for all groups by July 2022. Consistent differences were observed in overall missed monitoring rates between several groups throughout the study. CONCLUSION: DMARD monitoring rates temporarily deteriorated during the COVID-19 pandemic. Deterioration coincided with the onset of lockdown measures, with monitoring rates recovering rapidly as lockdown measures were eased. Differences observed in monitoring rates between medications, tests, regions and patient groups highlight opportunities to tackle potential inequalities in the provision or uptake of monitoring services. Further research should evaluate the causes of the differences identified between groups.

2.
Breast Cancer Res Treat ; 199(1): 35-46, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36859649

RESUMO

PURPOSE: The development of oestrogen resistance is a major challenge in managing hormone-sensitive metastatic breast cancer. Saracatinib (AZD0530), an oral Src kinase inhibitor, prevents oestrogen resistance in animal models and reduces osteoclast activity. We aimed to evaluate the efficacy of saracatinib addition to aromatase inhibitors (AI) in patients with hormone receptor-positive metastatic breast cancer. METHODS: This phase II multicentre double-blinded randomised trial allocated post-menopausal women to AI with either saracatinib or placebo (1:1 ratio). Patients were stratified into an "AI-sensitive/naïve" group who received anastrozole and "prior-AI" group who received exemestane. Primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival (OS), objective response rate (ORR) and toxicity. RESULTS: 140 patients were randomised from 20 UK centres to saracatinib/AI (n = 69) or placebo/AI (n = 71). Saracatinib was not associated with an improved PFS (3.7 months v. 5.6 months placebo/AI) and did not reduce likelihood of bony progression. There was no benefit in OS or ORR. Effects were consistent in "AI-sensitive/naive" and "prior-AI" sub-groups. Saracatinib was well tolerated with dose reductions in 16% and the main side effects were gastrointestinal, hypophosphatemia and rash. CONCLUSION: Saracatinib did not improve outcomes in post-menopausal women with metastatic breast cancer. There was no observed beneficial effect on bone metastases. CRUKE/11/023, ISRCTN23804370.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , Inibidores da Aromatase/efeitos adversos , Aromatase , Estrogênios/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
3.
Br J Cancer ; 127(6): 1051-1060, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35739300

RESUMO

BACKGROUND: Surgery for renal cell carcinoma (RCC) with venous tumour thrombus (VTT) extension into the renal vein (RV) and/or inferior vena cava (IVC) has high peri-surgical morbidity/mortality. NAXIVA assessed the response of VTT to axitinib, a potent tyrosine kinase inhibitor. METHODS: NAXIVA was a single-arm, multi-centre, Phase 2 study. In total, 20 patients with resectable clear cell RCC and VTT received upto 8 weeks of pre-surgical axitinib. The primary endpoint was percentage of evaluable patients with VTT improvement by Mayo level on MRI. Secondary endpoints were percentage change in surgical approach and VTT length, response rate (RECISTv1.1) and surgical morbidity. RESULTS: In all, 35% (7/20) patients with VTT had a reduction in Mayo level with axitinib: 37.5% (6/16) with IVC VTT and 25% (1/4) with RV-only VTT. No patients had an increase in Mayo level. In total, 75% (15/20) of patients had a reduction in VTT length. Overall, 41.2% (7/17) of patients who underwent surgery had less invasive surgery than originally planned. Non-responders exhibited lower baseline microvessel density (CD31), higher Ki67 and exhausted or regulatory T-cell phenotype. CONCLUSIONS: NAXIVA provides the first Level II evidence that axitinib downstages VTT in a significant proportion of patients leading to reduction in the extent of surgery. CLINICAL TRIAL REGISTRATION: NCT03494816.


Assuntos
Axitinibe , Carcinoma de Células Renais , Neoplasias Renais , Trombose , Axitinibe/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/cirurgia , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/cirurgia , Terapia Neoadjuvante , Nefrectomia , Estudos Retrospectivos , Trombose/prevenção & controle
4.
Nature ; 534(7607): 341-6, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27281222

RESUMO

Chronic myeloid leukaemia (CML) arises after transformation of a haemopoietic stem cell (HSC) by the protein-tyrosine kinase BCR-ABL. Direct inhibition of BCR-ABL kinase has revolutionized disease management, but fails to eradicate leukaemic stem cells (LSCs), which maintain CML. LSCs are independent of BCR-ABL for survival, providing a rationale for identifying and targeting kinase-independent pathways. Here we show--using proteomics, transcriptomics and network analyses--that in human LSCs, aberrantly expressed proteins, in both imatinib-responder and non-responder patients, are modulated in concert with p53 (also known as TP53) and c-MYC regulation. Perturbation of both p53 and c-MYC, and not BCR-ABL itself, leads to synergistic cell kill, differentiation, and near elimination of transplantable human LSCs in mice, while sparing normal HSCs. This unbiased systems approach targeting connected nodes exemplifies a novel precision medicine strategy providing evidence that LSCs can be eradicated.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Animais , Antígenos CD34/metabolismo , Azepinas/farmacologia , Azepinas/uso terapêutico , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Feminino , Proteínas de Fusão bcr-abl/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Imidazolinas/farmacologia , Imidazolinas/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Masculino , Camundongos , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/transplante , Proteômica , Proteínas Proto-Oncogênicas c-myc/deficiência , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Transcriptoma , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Blood ; 131(14): 1532-1544, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29437554

RESUMO

Chronic myeloid leukemia (CML) stem/progenitor cells (SPCs) express a transcriptional program characteristic of proliferation, yet can achieve and maintain quiescence. Understanding the mechanisms by which leukemic SPCs maintain quiescence will help to clarify how they persist during long-term targeted treatment. We have identified a novel BCR-ABL1 protein kinase-dependent pathway mediated by the upregulation of hsa-mir183, the downregulation of its direct target early growth response 1 (EGR1), and, as a consequence, upregulation of E2F1. We show here that inhibition of hsa-mir183 reduced proliferation and impaired colony formation of CML SPCs. Downstream of this, inhibition of E2F1 also reduced proliferation of CML SPCs, leading to p53-mediated apoptosis. In addition, we demonstrate that E2F1 plays a pivotal role in regulating CML SPC proliferation status. Thus, for the first time, we highlight the mechanism of hsa-mir183/EGR1-mediated E2F1 regulation and demonstrate this axis as a novel, critical factor for CML SPC survival, offering new insights into leukemic stem cell eradication.


Assuntos
Fator de Transcrição E2F1/biossíntese , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Neoplásico/metabolismo , Regulação para Cima , Animais , Proliferação de Células , Sobrevivência Celular , Fator de Transcrição E2F1/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Feminino , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Camundongos Knockout , MicroRNAs/genética , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia , RNA Neoplásico/genética , Transdução de Sinais
6.
Blood ; 129(2): 199-208, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-27793879

RESUMO

Targeting the fusion oncoprotein BCR-ABL with tyrosine kinase inhibitors has significantly affected chronic myeloid leukemia (CML) treatment, transforming the life expectancy of patients; however the risk for relapse remains, due to persistence of leukemic stem cells (LSCs). Therefore it is imperative to explore the mechanisms that result in LSC survival and develop new therapeutic approaches. We now show that major histocompatibility complex (MHC)-II and its master regulator class II transactivator (CIITA) are downregulated in CML compared with non-CML stem/progenitor cells in a BCR-ABL kinase-independent manner. Interferon γ (IFN-γ) stimulation resulted in an upregulation of CIITA and MHC-II in CML stem/progenitor cells; however, the extent of IFN-γ-induced MHC-II upregulation was significantly lower than when compared with non-CML CD34+ cells. Interestingly, the expression levels of CIITA and MHC-II significantly increased when CML stem/progenitor cells were treated with the JAK1/2 inhibitor ruxolitinib (RUX). Moreover, mixed lymphocyte reactions revealed that exposure of CD34+ CML cells to IFN-γ or RUX significantly enhanced proliferation of the responder CD4+CD69+ T cells. Taken together, these data suggest that cytokine-driven JAK-mediated signals, provided by CML cells and/or the microenvironment, antagonize MHC-II expression, highlighting the potential for developing novel immunomodulatory-based therapies to enable host-mediated immunity to assist in the detection and eradication of CML stem/progenitor cells.


Assuntos
Antígenos de Histocompatibilidade Classe II/biossíntese , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Células-Tronco Neoplásicas/imunologia , Evasão Tumoral/imunologia , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Regulação para Baixo , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica/imunologia , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Teste de Cultura Mista de Linfócitos , Masculino , Células-Tronco Neoplásicas/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia
7.
Blood ; 128(3): 371-83, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27222476

RESUMO

The regulation of hematopoietic stem cell (HSC) survival and self-renewal within the bone marrow (BM) niche is not well understood. We therefore investigated global transcriptomic profiling of normal human HSC/hematopoietic progenitor cells [HPCs], revealing that several chemokine ligands (CXCL1-4, CXCL6, CXCL10, CXCL11, and CXCL13) were upregulated in human quiescent CD34(+)Hoescht(-)Pyronin Y(-) and primitive CD34(+)38(-), as compared with proliferating CD34(+)Hoechst(+)Pyronin Y(+) and CD34(+)38(+) stem/progenitor cells. This suggested that chemokines might play an important role in the homeostasis of HSCs. In human CD34(+) hematopoietic cells, knockdown of CXCL4 or pharmacologic inhibition of the chemokine receptor CXCR2, significantly decreased cell viability and colony forming cell (CFC) potential. Studies on Cxcr2(-/-) mice demonstrated enhanced BM and spleen cellularity, with significantly increased numbers of HSCs, hematopoietic progenitor cell-1 (HPC-1), HPC-2, and Lin(-)Sca-1(+)c-Kit(+) subpopulations. Cxcr2(-/-) stem/progenitor cells showed reduced self-renewal capacity as measured in serial transplantation assays. Parallel studies on Cxcl4 demonstrated reduced numbers of CFC in primary and secondary assays following knockdown in murine c-Kit(+) cells, and Cxcl4(-/-) mice showed a decrease in HSC and reduced self-renewal capacity after secondary transplantation. These data demonstrate that the CXCR2 network and CXCL4 play a role in the maintenance of normal HSC/HPC cell fates, including survival and self-renewal.


Assuntos
Proliferação de Células/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Fator Plaquetário 4/metabolismo , Receptores de Interleucina-8B/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Sobrevivência Celular/fisiologia , Feminino , Células-Tronco Hematopoéticas/citologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Receptores de Interleucina-8B/genética , Baço/citologia , Baço/metabolismo
8.
Stem Cells ; 32(9): 2324-37, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24806995

RESUMO

Chronic myeloid leukemia (CML) is initiated and maintained by the tyrosine kinase BCR-ABL which activates a number of signal transduction pathways, including PI3K/AKT signaling and consequently inactivates FOXO transcription factors. ABL-specific tyrosine kinase inhibitors (TKIs) induce minimal apoptosis in CML progenitor cells, yet exert potent antiproliferative effects, through as yet poorly understood mechanisms. Here, we demonstrate that in CD34+ CML cells, FOXO1 and 3a are inactivated and relocalized to the cytoplasm by BCR-ABL activity. TKIs caused a decrease in phosphorylation of FOXOs, leading to their relocalization from cytoplasm (inactive) to nucleus (active), where they modulated the expression of key FOXO target genes, such as Cyclin D1, ATM, CDKN1C, and BCL6 and induced G1 arrest. Activation of FOXO1 and 3a and a decreased expression of their target gene Cyclin D1 were also observed after 6 days of in vivo treatment with dasatinib in a CML transgenic mouse model. The over-expression of FOXO3a in CML cells combined with TKIs to reduce proliferation, with similar results seen for inhibitors of PI3K/AKT/mTOR signaling. While stable expression of an active FOXO3a mutant induced a similar level of quiescence to TKIs alone, shRNA-mediated knockdown of FOXO3a drove CML cells into cell cycle and potentiated TKI-induced apoptosis. These data demonstrate that TKI-induced G1 arrest in CML cells is mediated through inhibition of the PI3K/AKT pathway and reactivation of FOXOs. This enhanced understanding of TKI activity and induced progenitor cell quiescence suggests that new therapeutic strategies for CML should focus on manipulation of this signaling network.


Assuntos
Fatores de Transcrição Forkhead/biossíntese , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dasatinibe/farmacologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fase G1/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fosforilação , Transdução de Sinais , Transfecção
9.
Lancet Diabetes Endocrinol ; 12(8): 558-568, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39054034

RESUMO

BACKGROUND: Some studies have shown that the incidence of type 2 diabetes increases after a diagnosis of COVID-19, although the evidence is not conclusive. However, the effects of the COVID-19 vaccine on this association, or the effect on other diabetes subtypes, are not clear. We aimed to investigate the association between COVID-19 and incidence of type 2, type 1, gestational and non-specific diabetes, and the effect of COVID- 19 vaccination, up to 52 weeks after diagnosis. METHODS: In this retrospective cohort study, we investigated the diagnoses of incident diabetes following COVID-19 diagnosis in England in a pre-vaccination, vaccinated, and unvaccinated cohort using linked electronic health records. People alive and aged between 18 years and 110 years, registered with a general practitioner for at least 6 months before baseline, and with available data for sex, region, and area deprivation were included. Those with a previous COVID-19 diagnosis were excluded. We estimated adjusted hazard ratios (aHRs) comparing diabetes incidence after COVID-19 diagnosis with diabetes incidence before or in the absence of COVID-19 up to 102 weeks after diagnosis. Results were stratified by COVID-19 severity (categorised as hospitalised or non-hospitalised) and diabetes type. FINDINGS: 16 669 943 people were included in the pre-vaccination cohort (Jan 1, 2020-Dec 14, 2021), 12 279 669 in the vaccinated cohort, and 3 076 953 in the unvaccinated cohort (both June 1-Dec 14, 2021). In the pre-vaccination cohort, aHRs for the incidence of type 2 diabetes after COVID-19 (compared with before or in the absence of diagnosis) declined from 4·30 (95% CI 4·06-4·55) in weeks 1-4 to 1·24 (1·14-1.35) in weeks 53-102. aHRs were higher in unvaccinated people (8·76 [7·49-10·25]) than in vaccinated people (1·66 [1·50-1·84]) in weeks 1-4 and in patients hospitalised with COVID-19 (pre-vaccination cohort 28·3 [26·2-30·5]) in weeks 1-4 declining to 2·04 [1·72-2·42] in weeks 53-102) than in those who were not hospitalised (1·95 [1·78-2·13] in weeks 1-4 declining to 1·11 [1·01-1·22] in weeks 53-102). Type 2 diabetes persisted for 4 months after COVID-19 in around 60% of those diagnosed. Patterns were similar for type 1 diabetes, although excess incidence did not persist beyond 1 year after a COVID-19 diagnosis. INTERPRETATION: Elevated incidence of type 2 diabetes after COVID-19 is greater, and persists for longer, in people who were hospitalised with COVID-19 than in those who were not, and is markedly less apparent in people who have been vaccinated against COVID-19. Testing for type 2 diabetes after severe COVID-19 and the promotion of vaccination are important tools in addressing this public health problem. FUNDING: UK National Institute for Health and Care Research, UK Research and Innovation (UKRI) Medical Research Council, UKRI Engineering and Physical Sciences Research Council, Health Data Research UK, Diabetes UK, British Heart Foundation, and the Stroke Association.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Inglaterra/epidemiologia , Estudos Retrospectivos , Feminino , Incidência , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Diabetes Mellitus Tipo 2/epidemiologia , Vacinação/estatística & dados numéricos , Adulto Jovem , Diabetes Mellitus/epidemiologia , Idoso de 80 Anos ou mais , Adolescente , Estudos de Coortes
10.
Nat Commun ; 15(1): 1090, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316788

RESUMO

Macrophages are fundamental cells of the innate immune system that support normal haematopoiesis and play roles in both anti-cancer immunity and tumour progression. Here we use a chimeric mouse model of chronic myeloid leukaemia (CML) and human bone marrow (BM) derived macrophages to study the impact of the dysregulated BM microenvironment on bystander macrophages. Utilising single-cell RNA sequencing (scRNA-seq) of Philadelphia chromosome (Ph) negative macrophages we reveal unique subpopulations of immature macrophages residing in the CML BM microenvironment. CML exposed macrophages separate from their normal counterparts by reduced expression of the surface marker CD36, which significantly reduces clearance of apoptotic cells. We uncover aberrant production of CML-secreted factors, including the immune modulatory protein lactotransferrin (LTF), that suppresses efferocytosis, phagocytosis, and CD36 surface expression in BM macrophages, indicating that the elevated secretion of LTF is, at least partially responsible for the supressed clearance function of Ph- macrophages.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Animais , Camundongos , Humanos , Medula Óssea/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mieloide/patologia , Cromossomo Filadélfia , Macrófagos/metabolismo , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA