Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681959

RESUMO

The innovative research in genome editing domains such as CRISPR-Cas technology has enabled genetic engineers to manipulate the genomes of living organisms effectively in order to develop the next generation of therapeutic tools. This technique has started the new era of "genome surgery". Despite these advances, the barriers of CRISPR-Cas9 techniques in clinical applications include efficient delivery of CRISPR/Cas9 and risk of off-target effects. Various types of viral and non-viral vectors are designed to deliver the CRISPR/Cas9 machinery into the desired cell. These methods still suffer difficulties such as immune response, lack of specificity, and efficiency. The extracellular and intracellular environments of cells and tissues differ in pH, redox species, enzyme activity, and light sensitivity. Recently, smart nanoparticles have been synthesized for CRISPR/Cas9 delivery to cells based on endogenous (pH, enzyme, redox specie, ATP) and exogenous (magnetic, ultrasound, temperature, light) stimulus signals. These methodologies can leverage genome editing through biological signals found within disease cells with less off-target effects. Here, we review the recent advances in stimulus-based smart nanoparticles to deliver the CRISPR/Cas9 machinery into the desired cell. This review article will provide extensive information to cautiously utilize smart nanoparticles for basic biomedical applications and therapeutic genome editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Nanopartículas/administração & dosagem , Nanopartículas/química , Animais , Técnicas de Transferência de Genes , Humanos
2.
Molecules ; 26(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572971

RESUMO

Understanding protein stability is critical for the application of enzymes in biotechnological processes. The structural basis for the stability of thermally adapted chitinases has not yet been examined. In this study, the amino acid sequences and X-ray structures of psychrophilic, mesophilic, and hyperthermophilic chitinases were analyzed using computational and molecular dynamics (MD) simulation methods. From the findings, the key features associated with higher stability in mesophilic and thermophilic chitinases were fewer and/or shorter loops, oligomerization, and less flexible surface regions. No consistent trends were observed between stability and amino acid composition, structural features, or electrostatic interactions. Instead, unique elements affecting stability were identified in different chitinases. Notably, hyperthermostable chitinase had a much shorter surface loop compared to psychrophilic and mesophilic homologs, implying that the extended floppy surface region in cold-adapted and mesophilic chitinases may have acted as a "weak link" from where unfolding was initiated. MD simulations confirmed that the prevalence and flexibility of the loops adjacent to the active site were greater in low-temperature-adapted chitinases and may have led to the occlusion of the active site at higher temperatures compared to their thermostable homologs. Following this, loop "hot spots" for stabilizing and destabilizing mutations were also identified. This information is not only useful for the elucidation of the structure-stability relationship, but will be crucial for designing and engineering chitinases to have enhanced thermoactivity and to withstand harsh industrial processing conditions.


Assuntos
Quitinases/química , Estabilidade Enzimática/genética , Extremófilos/química , Conformação Proteica , Sequência de Aminoácidos/genética , Domínio Catalítico/genética , Quitinases/genética , Quitinases/ultraestrutura , Biologia Computacional , Extremófilos/enzimologia , Extremófilos/genética , Temperatura Alta , Simulação de Dinâmica Molecular , Estabilidade Proteica
3.
Molecules ; 24(8)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013661

RESUMO

The potential of six ancient Tuscan sweet cherry (Prunus avium L.) varieties as a source of health-promoting pentacyclic triterpenes is here evaluated by means of a targeted gene expression and metabolite analysis. By using a sequence homology criterion, we identify five oxidosqualene cyclase genes (OSCs) and three cytochrome P450s (CYP85s) that are putatively involved in the triterpene production pathway in sweet cherries. We performed 3D structure prediction and induced-fit docking using cation intermediates and reaction products for some OSCs to predict their function. We show that the Tuscan varieties have different amounts of ursolic and oleanolic acids and that these variations are related to different gene expression profiles. This study stresses the interest of valorizing ancient fruits as alternative sources of functional molecules with nutraceutical value. It also provides information on sweet cherry triterpene biosynthetic genes, which could be the object of follow-up functional studies.


Assuntos
Sistema Enzimático do Citocromo P-450 , Frutas , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Modelos Biológicos , Ácido Oleanólico , Proteínas de Plantas , Prunus avium , Triterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Frutas/genética , Frutas/metabolismo , Ácido Oleanólico/biossíntese , Ácido Oleanólico/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Prunus avium/genética , Prunus avium/metabolismo , Ácido Ursólico
4.
Front Microbiol ; 14: 1227210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771703

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are chemicals that are released into the environment during activities of the petroleum industry. The bioaccumulation, carcinogenic and mutagenic potential of PAHs necessitates the bioremediation of these contaminants. However, bioremediation of PAHs has a number of limitations including the inability of a single microbe to degrade all of the PAH fraction's environmental constituents. Therefore, a different paradigm, employing microalgal-bacterial consortium (MBC), may be used to effectively remove PAHs contaminants. In this type of interaction, the microalgae and bacteria species in the consortium work together in a way that enhances the overall performance of the MBC. Bacterial species in the consortium provide essential nutrients or growth factors by degrading toxic substances and provide these to microalgae, while the microalgae species provide organic carbon for the bacterial species to grow. For the first time, the ability of Gonium pectorale (G. pectorale) microalgae to break down phenanthrene (PHE) and anthracene (ANT) was investigated. Phenanthrene was shown to be more effectively degraded by G. pectorale (98%) as compared to Bacillus licheniformis (B. licheniformis) 19%. Similarly, G. pectorale has effectively degrade anthracene (98%) as compared with B. licheniformis (45%). The consortia of G. pectorale and B. licheniformis has shown a slight increase in the degradation of PHE (96%) and ANT (99%). Our findings show that B. licheniformis did not inhibit the growth of G. pectorale and in the consortia has effectively eliminated the PAHs from the media. Therefore G. pectorale has a tremendous potential to remove PAHs from the polluted environment. Future research will be conducted to assess Gonium's capacity to eliminate PAHs that exhibit high molar masses than that of PHE and ANT.

6.
Cells ; 9(7)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630835

RESUMO

Gene editing that makes target gene modification in the genome by deletion or addition has revolutionized the era of biomedicine. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 emerged as a substantial tool due to its simplicity in use, less cost and extraordinary efficiency than the conventional gene-editing tools, including zinc finger nucleases (ZFNs) and Transcription activator-like effector nucleases (TALENs). However, potential off-target activities are crucial shortcomings in the CRISPR system. Numerous types of approaches have been developed to reduce off-target effects. Here, we review several latest approaches to reduce the off-target effects, including biased or unbiased off-target detection, cytosine or adenine base editors, prime editing, dCas9, Cas9 paired nickase, ribonucleoprotein (RNP) delivery and truncated gRNAs. This review article provides extensive information to cautiously interpret off-target effects to assist the basic and clinical applications in biomedicine.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Animais , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Reparo do DNA , Edição de Genes/normas , Humanos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA