Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Arch Microbiol ; 206(4): 190, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519821

RESUMO

Owing to the extensive prevalence of resistant bacteria to numerous antibiotic classes, antimicrobial resistance (AMR) poses a well-known hazard to world health. As an alternate approach in the field of antimicrobial drug discovery, repurposing the available medications which are also called antibiotic resistance breakers has been pursued for the treatment of infections with antimicrobial resistance pathogens. In this study, we used Haloperidol, Metformin and Hydroxychloroquine as repurposing drugs in in vitro (Antibacterial Antibiotic Sensitivity Test and Minimum Inhibitory Concentration-MIC) and in vivo (Shigellosis in Swiss albino mice) tests in combination with traditional antibiotics (Oxytetracycline, Erythromycin, Doxycycline, Gentamicin, Ampicillin, Chloramphenicol, and Penicillin) against a group of AMR resistance bacteria (Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Shigella boydii). After observing the results of the conducted in vitro experiments we studied the effects of the above non antibiotic drugs in combination with the said antibiotics. As an repurposing adjuvant antibiotic drug, Metformin exhibited noteworthy activity in almost all in vitro, in vivo and in silico tests (Zone of inhibition for 30 to 43 mm for E.coli in combination with Doxycycline; MIC value decreased 50 µM to 0.781 µM with Doxycycline on S. boydii).In rodents Doxycycline and Metformin showed prominent against Shigellosis in White blood cell count (6.47 ± 0.152 thousand/mm3) and Erythrocyte sedimentation rate (10.5 ± 1.73 mm/hr). Our findings indicated that Metformin and Doxycycline combination has a crucial impact on Shigellosis. The molecular docking study was performed targeting the Acriflavine resistance protein B (AcrB) (PDB ID: 4CDI) and MexA protein (PDB ID: 6IOK) protein with Metformin (met8) drug which showed the highest binding energy with - 6.4 kcal/mol and - 5.5 kcal/mol respectively. Further, molecular dynamics simulation revealed that the docked complexes were relatively stable during the 100 ns simulation period. This study suggest Metformin and other experimented drugs can be used as adjuvants boost up antibiosis but further study is needed to find out the safety and efficacy of this non-antibiotic drug as potent antibiotic adjuvant.


Assuntos
Disenteria Bacilar , Metformina , Animais , Camundongos , Antibacterianos/farmacologia , Simulação de Acoplamento Molecular , Doxiciclina/farmacologia , Metformina/farmacologia , Reposicionamento de Medicamentos , Bactérias , Testes de Sensibilidade Microbiana
2.
Chem Biodivers ; 21(3): e202301661, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359057

RESUMO

Both diabetes and cancer pose significant threats to public health. To overcome these challenges, nanobiotechnology offers innovative solutions for the treatment of these diseases. However, the synthesis of nanoparticles can be complex, costly and environmentally toxic. Therefore, in this study, we successfully synthesized Camellia sinensis silver nanoparticles (CS-AgNPs) biologically from methanolic leaf extract of C. sinensis and as confirmed by the visual appearance which exhibited strong absorption at 456 nm in UV-visible spectroscopy. The fourier transform infrared spectroscopy (FTIR) analysis revealed that phytochemicals of C. sinensis were coated with AgNPs. Scanning electron microscopy (SEM) analysis showed the spherical shape of CS-AgNPs, with a size of 15.954 nm, while X-ray diffraction spectrometry (XRD) analysis detected a size of 20.32 nm. Thermogravimetric analysis (TGA) indicated the thermal stability of CS-AgNPs. The synthesized CS-AgNPs significantly inhibited the ehrlich ascites carcinoma (EAC) cell growth with 53.42±1.101 %. The EAC cell line induced mice exhibited increased level of the serum aspartate aminotransferase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP), however this elevated serum parameter significantly reduced and controlled by the treatment with CS-AgNPs. Moreover, in a streptozotocin-induced diabetic mice model, CS-AgNPs greatly reduced blood glucose, total cholesterol, triglyceride, low-density lipoprotein (LDL) and creatinine levels. These findings highlight that the synthesized CS-AgNPs have significant anticancer and antidiabetic activities that could be used as promising particles for the treatment of these major diseases. However, pre-clinical and clinical trial should be addressed before use this particles as therapeutics agents.


Assuntos
Camellia sinensis , Diabetes Mellitus Experimental , Nanopartículas Metálicas , Neoplasias , Camundongos , Animais , Nanopartículas Metálicas/química , Prata/química , Camellia sinensis/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos , Difração de Raios X
4.
Med Chem ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659270

RESUMO

INTRODUCTION: Inflammatory Bowel Disease (IBD) encompasses a group of chronic disorders distinguished by inflammation of the gastrointestinal tract. Among these, Crohn's Disease (CD) stands out as a complex and impactful condition due to challenges for both diagnosis and management, making it a cynosure of research. METHOD: In CD, there is the predominance of proinflammatory bacteria, including the Adherentinvasive Escherichia coli (AIEC) with virulence-associated metabolic enzyme Propanediol Dehydratase (pduC), which has been identified as a therapeutic target for the management of CD. Herein, molecular modeling techniques, including molecular docking, Molecular Mechanics with Generalized Born and Surface Area (MMGBSA), drug-likeness, and pharmacokinetics profiling, were utilized to probe the potentials of eighty antibacterial compounds to serve as inhibitors of pduC. RESULT: The results of this study led to the identification of five compounds with promising potentials; the results of the molecular docking simulation revealed the compounds as possessing better binding affinities for the target compared to the standard drug (sulfasalazine), while Lipinski's rule of five-based assessment of their drug-likeness properties revealed them as potential oral drugs. MMGBSA free energy calculation and Molecular Dynamics (MD) simulation of the complexes formed a sequel to molecular docking, revealing the compounds as stable binders in the active site of the protein. CONCLUSION: Ultimately, the results of this study have revealed five compounds to possess the potential to serve as inhibitors of pduC of AIEC. However, experimental studies are still needed to validate the findings of this study.

5.
Front Chem ; 12: 1353385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591060

RESUMO

This work aims to add value to the Lavandula genus by identifying the chemical composition, antioxidant, and antimicrobial activities of two species lavender from Oulmès in Morocco; Lavandula abrialis and Lavandula stoechas. The uniqueness lies in the integrated approach that combines in vitro and in silico analyses to assess the biological properties of the essential oils (EO). The objective of this study is to enhance the significance of the Lavandula genus by analyzing the chemical composition, antioxidant properties, and antimicrobial effects of two lavender species found in Oulmès, Morocco: Lavandula abrialis and Lavandula stoechas. The distinctiveness is in the comprehensive methodology that merges in vitro and in silico investigations to evaluate the biological characteristics of the essential oils (EO). The extraction of essential oils (EO) by hydrodistillation from the aerial parts of Lavandula abrialis gave a high yield of essential oils (2.9%) compared to Lavandula stoechas (2.3%). A GC-MS analysis of the chemical composition revealed 56 chemical compounds, with some variation in the predominant components, representing between 99.98% and 100% of the EOs of the studied lavenders. Their antioxidant activity was assessed using the DPPH test. This method revealed that L. stoechas EO has a higher percentage of free radical inhibition than L. abrialis. The IC50 values demonstrate that the antioxidant activity of ascorbic acid is higher (1.62 g/mL) than the EOs of tested plants. Noteworthy, the EO of L. stoechas is more potent (12.94 g/mL) than that of Lavandula tibialis (34.71 g/mL). Regrading, the antibacterial tests, the EO of L. abrialis was particularly active against Staphylococcus aureus BLACT, which is inhibited at a concentration of 6.25 g/mL, while L. stoechas EO has a strong effect on Escherichia coli, with a MIC of 1.56 g/mL. Concerning the antifungal activity of the EOs, yeasts showed sensitivity toward EOs extracted from both L. tibialis and L. stoechas. Moreover, an in silico study was conducted targeting sarA protein of S. aureus (PDB ID: 2fnp) and NADPH oxidase from Lavandula sanfranciscensis (PDB: 2CDU) and results showed that Ishwarone and Selina-3,7 (11)-diene exhibited highest binding energy with -9.8 and -10.8 kcal/mol respectively. Therefore, these two compounds could be used as an antibacterial and antioxidant agents however more experimental and molecular study should be required.

6.
In Silico Pharmacol ; 12(2): 61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021738

RESUMO

Lasia spinosa (L. spinosa) is widely used in Asian countries for treating various diseases and as a vegetable, yet its bioactive properties remain under-researched. It is traditionally utilized in Ayurveda and the AYUSH system of medicine for its medicinal properties, and commonly used to treat digestive disorders, respiratory issues, and inflammatory conditions. This study aims to identify the phytochemicals in L. spinosa leaves and fruit extracts and evaluate their biological activities. Phytochemicals in methanol extracts of L. spinosa fruits and leaves were identified by GC-MS analysis. Antioxidant and cytotoxic activities were assessed using the DPPH free radical and nitric oxide (NO) scavenging assay and brine shrimp lethality test. Antibacterial activity was evaluated against Shigella boydii, Shigella flexneri, Streptococcus iniae, and Streptococcus dysgalactiae, while antifungal properties were tested against Cercospora beticola and Rhizoctonia solani. Molecular docking was conducted to predict the effectiveness of L. spinosa phytochemicals against NADPH oxidase and the Shigella effector OspG. Nine compounds were detected from both extracts. The methanol leaves extract exhibited superior antioxidant activity compared to the fruit extract, with IC50 values of 111.81 ± 8.99 µg/ml and 174.81 ± 4.86 µg/ml, respectively, as determined by the DPPH scavenging assay. The nitric oxide (NO) scavenging assay also revealed higher potency in the leaves extract (IC50 = 138.59 ± 1.50 µg/ml) compared to the fruit extract (IC50 = 196.47 ± 1.72 µg/ml). Both extracts showed significant antimicrobial activity against all tested microorganisms. In silico studies indicated notable inhibitory activity of all phytochemicals against the target proteins, with Linoelaidic acid and 9-Octadecenamide, (Z)- exhibiting the highest activity against NADPH oxidase (PDB: 2cdu) and Shigella flexneri OspG effector kinase (PDB: 4bvu), respectively. These findings suggest that L. spinosa has potent antioxidant and antimicrobial activities. Compounds from this plant could serve as lead compounds for developing antioxidant and antibacterial agents. However, molecular studies should be addressed.

7.
Sci Rep ; 14(1): 9828, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684729

RESUMO

The pharmacological effects of limonene, especially their derivatives, are currently at the forefront of research for drug development and discovery as well and structure-based drug design using huge chemical libraries are already widespread in the early stages of therapeutic and drug development. Here, various limonene derivatives are studied computationally for their potential utilization against the capsid protein of Herpes Simplex Virus-1. Firstly, limonene derivatives were designed by structural modification followed by conducting a molecular docking experiment against the capsid protein of Herpes Simplex Virus-1. In this research, the obtained molecular docking score exhibited better efficiency against the capsid protein of Herpes Simplex Virus-1 and hence we conducted further in silico investigation including molecular dynamic simulation, quantum calculation, and ADMET analysis. Molecular docking experiment has documented that Ligands 02 and 03 had much better binding affinities (- 7.4 kcal/mol and - 7.1 kcal/mol) to capsid protein of Herpes Simplex Virus-1 than Standard Acyclovir (- 6.5 kcal/mol). Upon further investigation, the binding affinities of primary limonene were observed to be slightly poor. But including the various functional groups also increases the affinities and capacity to prevent viral infection of the capsid protein of Herpes Simplex Virus-1. Then, the molecular dynamic simulation confirmed that the mentioned ligands might be stable during the formation of drug-protein complexes. Finally, the analysis of ADMET was essential in establishing them as safe and human-useable prospective chemicals. According to the present findings, limonene derivatives might be a promising candidate against the capsid protein of Herpes Simplex Virus-1 which ultimately inhibits Herpes Simplex Virus-induced encephalitis that causes interventions in brain inflammation. Our findings suggested further experimental screening to determine their practical value and utility.


Assuntos
Antivirais , Proteínas do Capsídeo , Desenho de Fármacos , Herpesvirus Humano 1 , Limoneno , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Limoneno/química , Limoneno/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Ligantes , Antivirais/farmacologia , Antivirais/química , Humanos , Simulação por Computador , Ligação Proteica
8.
Front Mol Biosci ; 10: 1278701, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38601799

RESUMO

Adenanthera pavonina is a medicinal plant with numerous potential secondary metabolites showing a significant level of antidiabetic activity. The objective of the current study was to identify potential phytochemicals from the methanolic leaf extract of Adenanthera pavonina as therapeutic agents against diabetes mellitus using GC-MS and in silico methods. The GC-MS analysis of the leaf extract revealed a total of 17 phytochemicals. Molecular docking was performed using these phytochemicals, targeting the mutated insulin receptor tyrosine kinase (5hhw), which inhibits glucose uptake by cells. Diazoprogesterone (-9.2 kcal/mol), 2,4,4,7a-Tetramethyl-1-(3-oxobutyl)octahydro-1H-indene-2-carboxylic acid (-6.9 kcal/mol), and 2-Naphthalenemethanol, decahydro-.alpha.,.alpha.,4a-trimethyl-8-methylene-, [2R-(2.alpha.,4a.alpha.,8a.beta.)] (-6.6 kcal/mol) exhibited better binding with the target protein. The ADMET analysis was performed for the top three compounds with the best docking scores, which showed positive results with no observed toxicity in the AMES test. Furthermore, the molecular dynamics study confirmed the favorable binding of Diazoprogesterone, 2,4,4,7a-Tetramethyl-1-(3-oxobutyl)octahydro-1H-indene-2-carboxylic acid and 2-Naphthalenemethanol, decahydro-.alpha.,.alpha.,4a-trimethyl-8-methylene-, [2R-(2.alpha.,4a.alpha.,8a.beta.)] with the receptor throughout the 100 ns simulation period.

9.
J Biomol Struct Dyn ; : 1-16, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38131136

RESUMO

Human T-cell leukemia virus 1 (HTLV-1) associated lymphoma is a devastating malignancy triggered by HTLV-1 infections. We employeda comprehensive drug design and computational strategy in this work to explore the inhibitory activitiesof Astilbin derivatives against HTLV-1-associated lymphoma. We evaluated the stability, binding affinities, and various computational analysis of Astilbin derivatives against target proteins, such as HTLV-1 main protease and HTLV-1 capsid protein. The root mean square deviation (RMSD), root mean square fluctuation, radius of gyration, hydrogen bond analysis, principal component analysis (PCA) and dynamic cross-correlation matrix (DCCM) were applied to characterize these protein-ligand interactions further. Ligand-03 and ligand-04 exhibited notable binding affinity to HTLV-1 capsid protein, while ligand-05 displayed high binding affinity to HTLV-1 protease. MD simulation analysis revealed that ligand-03, bound to HTLV-1 capsid protein, demonstrated enhanced stability with lower RMSD values and fewer conformational changes, suggesting a promising binding orientation. Ligand-04, despite stable binding, exhibited increased structural deviations, making it less suitable. Ligand-05 demonstrated stable binding to HTLV-1 protease throughout the simulation period at 100 nanoseconds. Hydrogen bond analysis indicated that ligand-05 formed persistent hydrogen bonds with significantresidues, contributing to its stability. PCA highlighted ligand-03's more remarkable conformational changes, while DCCM showed ligand-05's distinct dynamics, indicating its different behavior in the complex. Furthermore, binding free energy calculations supported the favorable interactions of ligand-03 and ligand-04 with HTLV-1 capsid protein, while ligand-05 showed weaker interactions with HTLV-1 protease. Molecular electrostatic potential and frontier molecular orbital analyses provided insights into these compounds' charge distribution and stability. In conclusion, this research found Astilbin derivatives as potential inhibitors of HTLV-1-associated lymphoma. Future attempts at drug development will benefit from the steady interaction landscape provided by Ligand-03, Ligand-04 and Ligand-05, which showed the most attractive binding profile with the target protein. These results open up new opportunities for innovative drug development, and more experimental testing should be done between Astilbin derivatives and HTLV-1-associated lymphoma.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA