Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Omega ; 5(28): 17787-17800, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32715265

RESUMO

At present, most researches on gas-liquid two-phase flow use a power-law fluid model. However, with the development of unconventional petroleum resources and the restarting of heavy oil, the fluid showed strong yield characteristics. The power-law constitutive will not be able to express the yield-pseudoplastic fluid rheological properties. In order to make the study applicable to a larger range of shear rates, this study used the Herschel-Bulkley fluid model to discuss the gas-liquid flow characteristics. Based on the Herschel-Bulkley fluid constitutive, a two-fluid model, combined with dimensionless and iterative calculation methods, was used to theoretically derive the prediction model of liquid holdup and pressure drop for gas-liquid stratified flow. The effects of non-Newtonian fluid rheological parameters, flow conditions, and pipeline geometry on Herschel-Bulkley fluid and gas stratified flow were further analyzed. The results show that the power-law index n and the yield stress τ0 (characterizing the rheological characteristics of the liquid phase) have significant effects on the gas-liquid two-phase stratified flow. Specifically, the enhanced liquid yield and shear thinning characteristics will lead to an increase in liquid holdup and a decrease in pressure drop. Comparing with the experimental data, the calculation model proposed in this work has a good prediction effect and provides new insights into the flow behavior of gas and waxy heavy oil with yield stress.

2.
ACS Omega ; 5(48): 31262-31271, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33324836

RESUMO

An experimental study on the flow behavior of crude oil containing sand and air in a vertical pipe with 50 mm diameter was carried out. The experiments were conducted under the following input superficial phase velocities: oil from 0.1 to 2.23 m/s and gas from 0 to 0.34 m/s. Oil was blended with sand in three different volume concentrations, namely, 0.7, 2, and 3%. Two different types of sand were used to investigate the effect of sand size distribution. A comparison between rheological measurements and pipe flow data showed that the stress-strain relationship obtained by the rheometer could be used to predict the transport characteristics in the vertical pipe flow. It was demonstrated that a small gas injection and sand addition can decrease the total pressure and friction pressure gradients. In the oil flow, the injection of air generally increased the friction factor compared to the single-phase flow, especially at low Reynolds numbers. However, the friction factor decreased by adding a small amount of fine sand. The accuracy of the correlation developed in this study was compared with other three correlations widely used in gas-liquid vertical pipe flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA