Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 42, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36804009

RESUMO

INTRODUCTION: The mechanisms of cognitive impairments in Parkinson's disease (PD) remain unknown. Accumulating evidence revealed that brain neuroinflammatory response mediated by microglial cells contributes to cognitive deficits in neuropathological conditions and macrophage antigen complex-1 (Mac1) is a key factor in controlling microglial activation. OBJECTIVES: To explore whether Mac1-mediated microglial activation participates in cognitive dysfunction in PD using paraquat and maneb-generated mouse PD model. METHODS: Cognitive performance was measured in wild type and Mac1-/- mice using Morris water maze test. The role and mechanisms of NADPH oxidase (NOX)-NLRP3 inflammasome axis in Mac1-mediated microglial dysfunction, neuronal damage, synaptic degeneration and phosphorylation (Ser129) of α-synuclein were explored by immunohistochemistry, Western blot and RT-PCR. RESULTS: Genetic deletion of Mac1 significantly ameliorated learning and memory impairments, neuronal damage, synaptic loss and α-synuclein phosphorylation (Ser129) caused by paraquat and maneb in mice. Subsequently, blocking Mac1 activation was found to mitigate paraquat and maneb-elicited microglial NLRP3 inflammasome activation in both in vivo and in vitro. Interestingly, stimulating activation of NOX by phorbol myristate acetate abolished the inhibitory effects of Mac1 blocking peptide RGD on paraquat and maneb-provoked NLRP3 inflammasome activation, indicating a key role of NOX in Mac1-mediated NLRP3 inflammasome activation. Furthermore, NOX1 and NOX2, two members of NOX family, and downstream PAK1 and MAPK pathways were recognized to be essential for NOX to regulate NLRP3 inflammasome activation. Finally, a NLRP3 inflammasome inhibitor glybenclamide abrogated microglial M1 activation, neurodegeneration and phosphorylation (Ser129) of α-synuclein elicited by paraquat and maneb, which were accompanied by improved cognitive capacity in mice. CONCLUSIONS: Mac1 was involved in cognitive dysfunction in a mouse PD model through NOX-NLRP3 inflammasome axis-dependent microglial activation, providing a novel mechanistic basis of cognitive decline in PD.


Assuntos
Maneb , Paraquat , Doença de Parkinson , Animais , Camundongos , alfa-Sinucleína/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Inflamassomos/metabolismo , Integrinas/metabolismo , Macrófagos/metabolismo , Maneb/toxicidade , Transtornos da Memória/metabolismo , Microglia/metabolismo , NADPH Oxidases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Paraquat/toxicidade , Doença de Parkinson/patologia , Antígeno de Macrófago 1
2.
Ecotoxicol Environ Saf ; 266: 115550, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832486

RESUMO

Microglia-mediated chronic neuroinflammation has been associated with cognitive decline induced by rotenone, a well-known neurotoxic pesticide used in agriculture. However, the mechanisms remain unclear. This work aimed to elucidate the role of complement receptor 3 (CR3), a highly expressed receptor in microglia, in cognitive deficits induced by rotenone. Rotenone up-regulated the expression of CR3 in the hippocampus and cortex area of mice. CR3 deficiency markedly ameliorated rotenone-induced cognitive impairments, neurodegeneration and phosphorylation (Ser129) of α-synuclein in mice. CR3 deficiency also attenuated rotenone-stimulated microglial M1 activation. In microglial cells, siRNA-mediated knockdown of CR3 impeded, while CR3 activation induced by LL-37 exacerbated, rotenone-induced microglial M1 activation. Mechanistically, CR3 deficiency blocked rotenone-induced activation of nuclear factor κB (NF-κB), signal transducer and activator of transcription 1 (STAT1) and STAT3 signaling pathways. Pharmacological inhibition of NF-κB or STAT3 but not STAT1 was confirmed to suppress microglial M1 activation elicited by rotenone. Further study revealed that CR3 deficiency or knockdown also reduced rotenone-induced expression of C3, an A1 astrocyte marker, and production of microglial C1q, TNFα and IL-1α, a cocktail for activated microglia to induce neurotoxic A1 astrocytes, via NF-κB and STAT3 pathways. Finally, a small molecule modulator of CR3 efficiently mitigated rotenone-elicited cognitive deficits in mice even administered after the establishment of cognitive dysfunction. Taken together, our findings demonstrated that CR3 is a key factor in mediating neurotoxic glial activation and subsequent cognitive impairments in rotenone-treated mice, giving novel insights into the immunopathogenesis of cognitive impairments in pesticide-related Parkinsonism.


Assuntos
Disfunção Cognitiva , Praguicidas , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Rotenona/toxicidade , Disfunção Cognitiva/induzido quimicamente , Receptores de Complemento
3.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015894

RESUMO

Image style transfer is a challenging problem in computer vision which aims at rendering an image into different styles. A lot of progress has been made to transfer the style of one painting of a representative artist in real time, whereas less attention has been focused on transferring an artist's style from a collection of his paintings. This task requests capturing the artist's precise style from his painting collection. Existing methods did not pay more attention on the possible disruption of original content details and image structures by texture elements and noises, which leads to the structure deformation or edge blurring of the generated images. To address this problem, we propose IFFMStyle, a high-quality image style transfer framework. Specifically, we introduce invalid feature filtering modules (IFFM) to the encoder-decoder architecture to filter the content-independent features in the original image and the generated image. Then, the content-consistency constraint is used to enhance the model's content-preserving capability. We also introduce style perception consistency loss to jointly train a network with content loss and adversarial loss to maintain the distinction of different semantic content in the generated image. Additionally, we have no requirement for paired content image and style image. The experimental results show that the stylized image generated by the proposed method significantly improves the quality of the generated images, and can realize the style transfer based on the semantic information of the content image. Compared with the advanced method, our method is more favored by users.

4.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269933

RESUMO

Chronic neuroinflammation has been considered to be involved in the progressive dopaminergic neurodegeneration in Parkinson's disease (PD). However, the mechanisms remain unknown. Accumulating evidence indicated a key role of the blood-brain barrier (BBB) dysfunction in neurological disorders. This study is designed to elucidate whether chronic neuroinflammation damages dopaminergic neurons through BBB dysfunction by using a rotenone-induced mouse PD model. Results showed that rotenone dose-dependently induced nigral dopaminergic neurodegeneration, which was associated with increased Evans blue content and fibrinogen accumulation as well as reduced expressions of zonula occludens-1 (ZO-1), claudin-5 and occludin, three tight junction proteins for maintaining BBB permeability, in mice, indicating BBB disruption. Rotenone also induced nigral microglial activation. Depletion of microglia or inhibition of microglial activation by PLX3397 or minocycline, respectively, greatly attenuated BBB dysfunction in rotenone-lesioned mice. Mechanistic inquiry revealed that microglia-mediated activation of matrix metalloproteinases-2 and 9 (MMP-2/-9) contributed to rotenone-induced BBB disruption and dopaminergic neurodegeneration. Rotenone-induced activation of MMP-2/-9 was significantly attenuated by microglial depletion and inactivation. Furthermore, inhibition of MMP-2/-9 by a wide-range inhibitor, SB-3CT, abrogated elevation of BBB permeability and simultaneously increased tight junctions expression. Finally, we found that microglial depletion and inactivation as well as inhibition of MMP-2/-9 significantly ameliorated rotenone-elicited nigrostriatal dopaminergic neurodegeneration and motor dysfunction in mice. Altogether, our findings suggested that microglial MMP-2/-9 activation-mediated BBB dysfunction contributed to dopaminergic neurodegeneration in rotenone-induced mouse PD model, providing a novel view for the mechanisms of Parkinsonism.


Assuntos
Neurônios Dopaminérgicos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Doença de Parkinson , Animais , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Permeabilidade , Rotenona/metabolismo , Rotenona/farmacologia
5.
J Neuroinflammation ; 18(1): 4, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402167

RESUMO

BACKGROUND: Cognitive decline occurs frequently in Parkinson's disease (PD), which greatly decreases the quality of life of patients. However, the mechanisms remain to be investigated. Neuroinflammation mediated by overactivated microglia is a common pathological feature in multiple neurological disorders, including PD. This study is designed to explore the role of microglia in cognitive deficits by using a rotenone-induced mouse PD model. METHODS: To evaluate the role of microglia in rotenone-induced cognitive deficits, PLX3397, an inhibitor of colony-stimulating factor 1 receptor, and minocycline, a widely used antibiotic, were used to deplete or inactivate microglia, respectively. Cognitive performance of mice among groups was detected by Morris water maze, objective recognition, and passive avoidance tests. Neurodegeneration, synaptic loss, α-synuclein phosphorylation, glial activation, and apoptosis were determined by immunohistochemistry and Western blot or immunofluorescence staining. The gene expression of inflammatory factors and lipid peroxidation were further explored by using RT-PCR and ELISA kits, respectively. RESULTS: Rotenone dose-dependently induced cognitive deficits in mice by showing decreased performance of rotenone-treated mice in the novel objective recognition, passive avoidance, and Morris water maze compared with that of vehicle controls. Rotenone-induced cognitive decline was associated with neurodegeneration, synaptic loss, and Ser129-phosphorylation of α-synuclein and microglial activation in the hippocampal and cortical regions of mice. A time course experiment revealed that rotenone-induced microglial activation preceded neurodegeneration. Interestingly, microglial depletion by PLX3397 or inactivation by minocycline significantly reduced neuronal damage and α-synuclein pathology as well as improved cognitive performance in rotenone-injected mice. Mechanistically, PLX3397 and minocycline attenuated rotenone-induced astroglial activation and production of cytotoxic factors in mice. Reduced lipid peroxidation was also observed in mice treated with combined PLX3397 or minocycline and rotenonee compared with rotenone alone group. Finally, microglial depletion or inactivation was found to mitigate rotenone-induced neuronal apoptosis. CONCLUSIONS: Taken together, our findings suggested that microglial activation contributes to cognitive impairments in a rotenone-induced mouse PD model via neuroinflammation, oxidative stress, and apoptosis, providing novel insight into the immunopathogensis of cognitive deficits in PD.


Assuntos
Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Microglia/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Rotenona/toxicidade , Aminopiridinas/farmacologia , Animais , Disfunção Cognitiva/psicologia , Inseticidas/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Minociclina/farmacologia , Transtornos Parkinsonianos/psicologia , Pirróis/farmacologia
6.
Clin Lab ; 67(8)2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34383412

RESUMO

BACKGROUND: Lipoprotein-associated phospholipase A2 (Lp-PLA2) has been identified as an inflammatory marker tightly correlated with the onset of atherosclerosis. Although several methodologies have been developed to detect Lp-PLA2, including enzyme-linked immunosorbent assay, Lp-PLA2 detection is still time- and resource-consuming with poor antiinterference ability and low sensitivity. Thus, it is urgent to explore new methodology for Lp-PLA2 detection. METHODS: In the current study, we evaluated the clinical performance of a modified Lp-PLA2 quantitative assay kit based on magnetic particle chemiluminescence, and analyzed the levels of Lp-PLA2 in atherosclerosis patients using this kit. RESULTS: Our results showed that the magnetic particle chemiluminescence method could effectively dissociate Lp-PLA2 from lipoprotein and finish the test within 20 minutes with high accuracy and good repeatability, as demonstrated by the results of linear measurement range, precision, and recovery rate. Furthermore, our preliminary data revealed that serum Lp-PLA2 levels were correlated to the presence and degree of atherosclerotic plaques. CONCLUSIONS: Lp-PLA2 could be helpful in diagnosing atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , 1-Alquil-2-acetilglicerofosfocolina Esterase , Aterosclerose/diagnóstico , Biomarcadores , Humanos , Lipoproteínas
7.
J Clin Lab Anal ; 35(3): e23656, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33314296

RESUMO

BACKGROUND: The present study aimed to explore the correlation of long non-coding RNA highly up-regulating in liver cancer (lncRNA HULC) with disease risk, inflammatory cytokines, biochemical indexes, disease severity, infective features, and 28-day mortality of sepsis. METHODS: Totally 174 sepsis patients and 100 controls were enrolled. Peripheral blood samples were collected from sepsis patients after diagnosis and from controls at enrollment, respectively, and further for separation of peripheral blood mononuclear cell (PBMC) and serum samples. PBMC samples were for lncRNA HULC detection, and serum samples were for inflammatory cytokine detection. RESULTS: LncRNA HULC expression was increased in sepsis patients compared with controls. Moreover, lncRNA HULC was positively associated with TNF-α, IL-6, IL-17, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, serum creatinine, white blood cell, and C-reactive protein in sepsis patients, but not in controls. Furthermore, in sepsis patients, lncRNA HULC expression was positively correlated with acute physiology and chronic health evaluation II score and sequential organ failure assessment score, but not correlated with primary infection sites or primary infection organisms; meanwhile, lncRNA HULC expression was increased in deaths compared with survivors; subsequent receiver operating characteristic curve indicated that lncRNA HULC presented good value in predicting increased 28-day mortality (AUC: 0.785, 95% CI: 0.713-0.857), and its independent predictive value for mortality was also verified by multivariate analysis. CONCLUSION: LncRNA HULC is correlated with higher disease risk, severity, and inflammation and serves as an independent factor for predicting increased mortality, suggesting its potential in promoting accuracy of prognostic prediction for sepsis management.


Assuntos
RNA Longo não Codificante/sangue , Sepse/etiologia , Sepse/mortalidade , Adulto , Idoso , Estudos de Casos e Controles , Citocinas/sangue , Citocinas/genética , Feminino , Marcadores Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Escores de Disfunção Orgânica , Sepse/genética , Índice de Gravidade de Doença
8.
J Biosoc Sci ; : 1-12, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34024295

RESUMO

In October 2015, the Chinese Government announced that the one-child policy had finally been replaced by a universal two-child policy. China's universal two-child policy is highly significant because, for the first time in 36 years, no one in an urban city is restricted to having just one child. This cross-sectional study was conducted to explore future fertility intentions and factors influencing individual reproductive behaviour (whether to have two children) in Dalian City. A total of 1370 respondents were interviewed. The respondents' mean ideal number of children was only 1.73, and urban respondents' sex preference was symmetrical. A total of 19.0% of the respondents were unmarried, 64.5% were married and had childbearing experience and only 6.3% of married respondents had two children. Among the 1370 participants, 30.4% stated that they would have a second child, while 69.6% refused to have a second child in the future. Binary logistic regression analysis (Model 1) showed that the following characteristics were associated with having only one child in the future: being female, being older, having a lower education level, being born in Dalian, having a lower family income and reporting one child as the ideal number of children. Model 2 (comprising only respondents with childbearing experience) showed that respondents who were female, had a lower family income and were unable to obtain additional financial support from parents were more likely to intend to stick at one child. In addition, respondents' ideal number of children and childbearing experiences had a significant influence on future fertility intentions. These results suggest that fertility intentions and reproductive behaviours are still below those needed for replacement level fertility in Dalian City. China's policymakers should pay more attention to these factors (socioeconomic characteristics, economic factors, desired number of children and childbearing experiences) and try to increase individual reproductive behaviour.

9.
J Neuroinflammation ; 17(1): 148, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375810

RESUMO

BACKGROUND: The loss of locus coeruleus noradrenergic (LC/NE) neurons in the brainstem is reported in multiple neurodegenerative disorders, including Parkinson's disease (PD). However, the mechanisms remain unclear. Strong evidence suggested that microglia-mediated neuroinflammation contributes to neurodegeneration in PD. We recently recognized integrin CD11b, the α-chain of macrophage antigen complex-1 (Mac-1, also called CR3), as a key regulator for microglial activation. However, whether CD11b is involved in LC/NE neurodegeneration in PD remains to be investigated. METHODS: LC/NE neurodegeneration and microglial activation were compared between wild type (WT) and CD11b KO mice after treated with paraquat and maneb, two pesticides that widely used to create PD model. The role of NLRP3 inflammasome in CD11b-mediated microglial dysfunction and LC/NE neurodegeneration was further explored. LC/NE neurodegeneration, microglial phenotype, and NLRP3 inflammasome activation were determined by using Western blot, immunohistochemistry, and RT-PCR technologies. RESULTS: Paraquat and maneb co-exposure elevated the expressions of CD11b in the brainstem of mice, and CD11b knockout significantly reduced LC/NE neurodegeneration induced by paraquat and maneb. Mitigated microglial activation and gene expressions of proinflammatory cytokines were also observed in paraquat and maneb-treated CD11b-/- mice. Mechanistically, CD11b-mediated NLRP3 inflammasome activation contributes to paraquat and maneb-induced LC/NE neurodegeneration. Compared with WT controls, CD11b deficiency reduced paraquat and maneb-induced NLRP3 expression, caspase-1 activation, and interleukin-1ß production in mice. Furthermore, inhibition of NLRP3 inflammasome by glybenclamide, a sulfonylurea inhibitor of NLRP3 inflammasome, was found to be able to suppress microglial proinflammatory activation and nuclear factor-κB activation induced by paraquat and maneb. Moreover, reduced reactive oxygen species production, NADPH oxidase, and inducible nitric oxide synthase expressions as well as 4-hydroxynonenal and malondialdehyde levels were detected in combined glybenclamide and paraquat and maneb-treated mice compared with paraquat and maneb alone group. Finally, we found that glybenclamide treatment ameliorated LC/NE neurodegeneration and α-synuclein aggregation in paraquat and maneb-treated mice. CONCLUSION: Our findings suggested that CD11b mediates LC/NE neurodegeneration through NLRP3 inflammation-dependent microglial proinflammatory activation in a two pesticide-induced mouse PD model, providing a novel insight into the immune pathogenesis of LC/NE neuronal damage in related disorders.


Assuntos
Neurônios Adrenérgicos/patologia , Antígeno CD11b/metabolismo , Locus Cerúleo/patologia , Degeneração Neural/patologia , Transtornos Parkinsonianos/patologia , Neurônios Adrenérgicos/metabolismo , Animais , Modelos Animais de Doenças , Inflamassomos/metabolismo , Locus Cerúleo/metabolismo , Masculino , Maneb/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Degeneração Neural/metabolismo , Paraquat/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Praguicidas/toxicidade
10.
Amino Acids ; 50(5): 547-556, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29508060

RESUMO

Beyond nigrostriatal dopaminergic system, the noradrenergic locus coeruleus (LC/NE) neurons are also degenerated in patients with Parkinson's disease (PD), the second most common neurodegenerative disorder. We previously reported that microglia-mediated neuroinflammation contributes to LC/NE neurodegeneration. The purpose of this study is aimed to test whether taurine, an endogenous amino acid, could be able to protect LC/NE neurons through inhibition of microglial activation using paraquat and maneb-induced mouse PD model. Taurine (150 mg/kg) was administrated (i.p) to mice 30 min prior to paraquat (10 mg/kg) and maneb (30 mg/kg) intoxication for consecutive 6 weeks (twice per week). The results clearly demonstrated that paraquat and maneb co-exposure resulted in loss of tyrosine hydroxylase-positive neurons in the LC in mice, which was significantly ameliorated by taurine. Mechanistically, inhibition of microglia-mediated neuroinflammation contributed to taurine-afforded neuroprotection. Taurine attenuated paraquat and maneb-induced microglial activation and M1 polarization as well as release of proinflammatory cytokines in brainstem of mice. Taurine also abrogated microglial NADPH oxidase activation and oxidative damage in paraquat and maneb-treated mice. Furthermore, inhibition of nuclear factor-κB (NF-κB) but not signal transducers and activators of transcription 1/3 (STAT1/3) signaling pathway participated in taurine-inhibited microglial activation. Collectively, taurine exerted LC/NE neuroprotection against microglia-mediated neurotoxicity. The robust neuroprotective effects of taurine suggest that taurine may be a promising candidate for potential therapy for patients suffering from PD.


Assuntos
Locus Cerúleo/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson Secundária/prevenção & controle , Taurina/farmacologia , Animais , Locus Cerúleo/patologia , Masculino , Maneb/toxicidade , Camundongos , Microglia/patologia , NADPH Oxidases/metabolismo , Neurônios/patologia , Paraquat/toxicidade , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo
11.
Future Oncol ; 14(24): 2483-2492, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29756998

RESUMO

AIM: To investigate the potential prognostic value of LDHA in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). PATIENTS & METHODS: Molecular, clinicopathological and survival data in Cancer Genome Atlas-Lung Cancer were obtained for secondary analysis. RESULTS: LDHA expression was significantly upregulated in both LUAD and LUSC compared with normal lung tissues. LUSC tissues had even higher LDHA expression compared with LUAD tissues. Increased LDHA expression was an independent prognostic indicator in terms of overall survival (hazard ratio: 1.547, 95% CI: 1.253-1.911; p < 0.001) and recurrence-free survival (hazard ratio: 1.486, 95% CI: 1.161-1.900; p = 0.002) in LUAD, but not in LUSC. CONCLUSION: LDHA expression might only serve as an independent prognostic indicator of unfavorable overall survival and recurrence-free survival in LUAD, but not in LUSC.


Assuntos
Adenocarcinoma de Pulmão/patologia , Carcinoma de Células Escamosas/patologia , L-Lactato Desidrogenase/biossíntese , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/mortalidade , Adulto , Idoso , Biomarcadores Tumorais/análise , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidade , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Intervalo Livre de Progressão , Estudos Retrospectivos , Regulação para Cima
13.
Free Radic Biol Med ; 220: 56-66, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697489

RESUMO

Apart from dopaminergic neurotoxicity, exposure to rotenone, a commonly used insecticide in agriculture, also adversely affects hippocampal and cortical neurons, resulting in cognitive impairments in mice. We recently established a role of microglia-mediated neuroinflammation in rotenone-elicited deficits of cognition, yet the mechanisms remain elusive. Here, we investigated the involvement of NADPH oxidase 2 (NOX2) catalytic subunit gp91phox in rotenone-induced cognitive deficits and the associated mechanisms. Our study demonstrated that rotenone exposure elevated expression of gp91phox and phosphorylation of the NOX2 cytosolic subunit p47phox, along with NADPH depletion in the hippocampus and cortex of mice, indicating NOX2 activation. Specific knockdown of gp91phox in microglia via adeno-associated virus delivery resulted in reduced microglial activation, proinflammatory gene expression and improved learning and memory capacity in rotenone-intoxicated mice. Genetic deletion of gp91phox also reversed rotenone-elicited cognitive dysfunction in mice. Furthermore, microglial gp91phox knockdown attenuated neuronal damage and synaptic loss in mice. This intervention also suppressed iron accumulation, disruption of iron-metabolism proteins and iron-dependent lipid peroxidation and restored the balance of ferroptosis-related parameters, including GPX4, SLC711, PTGS2, and ACSL4 in rotenone-lesioned mice. Intriguingly, pharmacological inhibition of ferroptosis with liproxstatin-1 conferred protection against rotenone-induced neurodegeneration and cognitive dysfunction in mice. In summary, our findings underscored the contribution of microglial gp91phox-dependent neuroinflammation and ferroptosis to learning and memory dysfunction in rotenone-lesioned mice. These results provided valuable insights into the pathogenesis of cognitive deficits associated with pesticide-induced Parkinsonism, suggesting potential therapeutic avenues for intervention.


Assuntos
Ferroptose , Transtornos da Memória , Microglia , NADPH Oxidase 2 , Doenças Neuroinflamatórias , Rotenona , Animais , Camundongos , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Microglia/metabolismo , Microglia/patologia , Microglia/efeitos dos fármacos , Rotenona/toxicidade , Ferroptose/efeitos dos fármacos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/genética , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/patologia , Masculino , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Neurônios/metabolismo , Neurônios/patologia , Neurônios/efeitos dos fármacos , Camundongos Knockout
14.
Free Radic Biol Med ; 212: 384-402, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38182072

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder, yet treatment options are limited. Clozapine (CLZ), an antipsychotic used for schizophrenia, has potential as a PD treatment. CLZ and its metabolite, Clozapine-N-Oxide (CNO), show neuroprotective effects on dopaminergic neurons, with mechanisms needing further investigation. This study aimed to confirm the neuroprotective effects of CLZ and CNO in a rotenone-induced mouse model and further explore the underlying mechanisms of CNO-afforded protection. Gait pattern and rotarod activity evaluations showed motor impairments in rotenone-exposed mice, with CLZ or CNO administration ameliorating behavioral deficits. Cell counts and biochemical analysis demonstrated CLZ and CNO's effectiveness in reducing rotenone-induced neurodegeneration of dopaminergic neurons in the nigrostriatal system in mice. Mechanistic investigations revealed that CNO suppressed rotenone-induced ferroptosis of dopaminergic neurons by rectifying iron imbalances, curtailing lipid peroxidation, and mitigating mitochondrial morphological changes. CNO also reversed autolysosome and ferritinophagic activation in rotenone-exposed mice. SH-SY5Y cell cultures validated these findings, indicating ferritinophage involvement, where CNO-afforded protection was diminished by ferritinophagy enhancers. Furthermore, knockdown of NCOA4, a crucial cargo receptor for ferritin degradation in ferritinophagy, hampered rotenone-induced ferroptosis and NCOA4 overexpression countered the anti-ferroptotic effects of CNO. Whereas, iron-chelating agents and ferroptosis enhancers had no effect on the anti-ferritinophagic effects of CNO in rotenone-treated cells. In summary, CNO shielded dopaminergic neurons in the rotenone-induced PD model by modulating NCOA4-mediated ferritinophagy, highlighting a potential therapeutic pathway for PD treatment. This research provided insights into the role of NCOA4 in ferroptosis and suggested new approaches for PD therapy.


Assuntos
Clozapina , Ferroptose , Neuroblastoma , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Doença de Parkinson , Camundongos , Humanos , Animais , Rotenona/toxicidade , Neurônios Dopaminérgicos/metabolismo , Clozapina/farmacologia , Clozapina/metabolismo , Fármacos Neuroprotetores/farmacologia , Neuroblastoma/metabolismo , Síndromes Neurotóxicas/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Ferro/metabolismo , Óxidos/metabolismo , Óxidos/farmacologia
15.
Front Public Health ; 12: 1296869, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351960

RESUMO

Background: The coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 infection continues to affect the daily life of communities worldwide. Nutrition is a vital determinant of overall health. Given the lack of specific drugs for COVID-19 and incomplete vaccination coverage, optimizing nutrition appears to be one of the most cost-effective means of enhancing immunity. Therefore, this study was designed to evaluate nutrition-related knowledge, attitudes, and practices (KAP) to offer insights into the personal determinants of dietary behavior during COVID-19 pandemic in four major cities within the Northeast region. Methods: This cross-sectional study was conducted between January and December 2022 using a self-administered questionnaire. The data were entered in EpiData V-3.02 and analyzed using SPSS version 26. Binary logistic regression analysis was also employed to examine the association between dependent and independent variables. Results: A total of 4,092 respondents were included in the study. Most of the respondents demonstrated had inadequate nutrition knowledge, 26% of them provided ≥60% of correct answers. About one-third of the respondents were knowledgeable about the daily levels of oil, salt, milk, water, vegetables and fruits for adults. Furthermore, our results showed that 60.6% of participants held positive attitudes toward healthy eating. Additionally, only 54.6% of the participants have heathy dietary practices during COVID-19 pandemic. Binary logistic regression analysis showed that the following characteristics were associated with displaying unhealthy dietary behaviors: being men, having a lower education level, having a family income of 10,000-19,999 and more than 20,000, being resided in Harbin, Shenyang, and Changchun. Importantly, the strongest associations were observed between poor dietary knowledge and unhealthy eating behaviors. Similarly, dietary attitudes were strongly associated with healthy dietary behaviors when the effects of other factors were excluded; responders with negative attitudes were more likely to exhibit unhealthy eating behaviors. Conclusion: Our findings suggest that residents in the Northeast China possessed a relatively low level of nutritional knowledge, which directly influenced their dietary practices during the COVID-19 pandemic. This study provides valuable insights into the cross-sectional description and key factors related to nutrition-related KAP, serving as a basis for future policymaking to respond more effectively to health crises.


Assuntos
COVID-19 , Adulto , Masculino , Humanos , Feminino , COVID-19/epidemiologia , Estudos Transversais , SARS-CoV-2 , Pandemias , Conhecimentos, Atitudes e Prática em Saúde , China/epidemiologia
16.
Int J Biol Macromol ; 267(Pt 1): 131438, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583845

RESUMO

A glutenin (G)-chitosan (CS) complex (G-CS) was cross-linked by water annealing with aim to prepare structured 3D porous cultured meat scaffolds (CMS) here. The CMS has pore diameters ranging from 18 to 67 µm and compressive moduli from 16.09 to 60.35 kPa, along with the mixing ratio of G/CS. SEM showed the porous organized structure of CMS. FTIR and CD showed the increscent content of α-helix and ß-sheet of G and strengthened hydrogen-bondings among G-CS molecules, which strengthened the stiffness of G-CS. Raman spectra exhibited an increase of G concentration resulted in higher crosslinking of disulfide-bonds in G-CS, which aggrandized the bridging effect of G-CS and maintained its three-dimensional network. Cell viability assay and immuno-fluorescence staining showed that G-CS effectively facilitated the growth and myogenic differentiation of porcine skeletal muscle satellite cells (PSCs). CLSM displayed that cells first occupied the angular space of hexagon and then ring-growth circle of PSCs were orderly formed on G-CS. The texture and color of CMS which loaded proliferated PSCs were fresh-meat like. These results showed that physical cross-linked G-CS scaffolds are the biocompatible and stable adaptable extracellular matrix with appropriate architectural cues and natural micro-environment for structured CM models.


Assuntos
Quitosana , Carne , Alicerces Teciduais , Quitosana/química , Animais , Alicerces Teciduais/química , Porosidade , Suínos , Engenharia Tecidual/métodos , Sobrevivência Celular/efeitos dos fármacos , Materiais Biocompatíveis/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Carne in vitro
17.
Neurotoxicology ; 99: 50-58, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37722613

RESUMO

We recently revealed a pivotal role of NLRP3 inflammasome in the neurotoxicity induced by n-hexane, owing to its activation and release of pro-inflammatory cytokines. However, the mechanisms of how the activation of NLRP3 inflammasome was triggered by 2,5-hexanedione (HD), the toxic product of n-hexane metabolism, remain to be explored. Here, we investigated whether mitochondrial reactive oxygen species (mtROS) was involved in HD-elicited NLRP3 inflammasome activation in microglia. We demonstrated that exposure to HD at 4 and 8 mM elevated production of mtROS in BV2 microglia. Scavenging mtROS by Mito-TEMPO, an mtROS scavenger, dramatically reduced HD-induced NLRP3 expression, caspase-1 activation and interleukin-1ß production, pointing a crucial role of mtROS in NLRP3 inflammasome activation. Mechanistic study revealed that HD intoxication promoted activation of mitophagy. HD induced expression of Beclin-1, LC3II, and two mitophagy-related proteins, i.e., Pink1 and Parkin and simultaneously, reduced p62 expression in both whole cell and isolated mitochondria of microglia. Furthermore, inhibition of mitophagy by 3-methyladenine (3-MA) greatly reduced production of mtROS, expression of mitochondrial fission-related proteins, dynamin-related protein 1 (Drp1) and fission protein 1 (Fis1) and activation of NLRP3 inflammasome in HD-intoxicated microglia. Blocking mitochondrial fission by Mdivi-1 also prevented HD-induced mtROS production and NLRP3 inflammasome activation in microglia. In conclusion, our data indicated that HD triggered activation of NLRP3 inflammasome through mitophagy-dependent mtROS production, offering an important insight for the immunopathogenesis of environmental toxins-induced neuroinflammation and neurotoxicity.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Microglia/metabolismo , Mitocôndrias/metabolismo
18.
Front Pharmacol ; 14: 1139514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056989

RESUMO

Objectives: The aim of this study was to systematically review the efficacy and tolerability of perampanel (PER) when used as add-on treatment or monotherapy in patients with epilepsy aged 12 years and older in routine clinical practice. Methods: Electronic and clinical trials databases were searched for observational studies of PER published up to 1 March 2022. The outcomes of interest were responder rates, adverse effects (AEs), and withdrawal rates. Subgroup analyses were performed to explore the potential factors that might affect the efficacy and safety of PER usage. Results: A total of 56 studies, which included 10,688 patients, were enrolled. The results showed that after 3, 6, and 12 months of PER treatment, the pooled 50% responder rates in patients with epilepsy were 50.0% (95% CI: 0.41-0.60), 44.0% (95% CI: 0.38-0.50), and 39.0% (95% CI: 0.31-0.48), respectively, and the pooled seizure-free rates were 24.0% (95% CI: 0.17-0.32), 21.0% (95% CI: 0.17-0.25), and 20.0% (95% CI: 0.16-0.24), respectively. Subgroup analyses revealed that the efficacy of PER could be affected by the way in which PER is administrated. Patients in the groups where PER was used as the first add-on, primary monotherapy, or combined with non-enzyme-inducing AEDs (non-EIAEDs) displayed a high 50% responder rate and seizure-free rate when compared with those in the late add-on, conversion therapy, or combined with the EIAEDs groups, respectively. Furthermore, the incidences of AEs at 3, 6, and 12 months of PER treatment were 46% (95% CI: 0.38-0.55), 52.0% (95% CI: 0.43-0.60), and 46.0% (95% CI: 0.40-0.52), respectively. The withdrawal rates due to AEs were 8.0% (95% CI: 0.06-0.11), 16.0% (95% CI: 0.13-0.20), and 16% (95% CI: 0.11-0.21) at 3, 6, and 12 months of PER treatment, respectively. Subgroup analyses showed a higher withdrawal rate in the rapid (30%, 95% CI: 0.22-0.38) than in the slow (12%, 95% CI: 0.06-0.18) titration group. Conclusion: Altogether, PER was effective and could be fairly tolerated in both short-term and long-term usage in patients with epilepsy in routine clinical practice. Furthermore, PER appeared to be more effective when PER was used as the first add-on, monotherapy, or concomitant with non-EIAEDs. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022384532.

19.
J Ethnopharmacol ; 312: 116497, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37072089

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine, scorpion is used to treat diseases with symptoms such as trembling, convulsion and dementia. Our laboratory employs patented technology to extract and purify the active single component from scorpion venom. We then utilize mass spectrometry to determine the amino acid sequence of the polypeptide and synthesize it artificially to acquire the polypeptide with a purity of 99.3%, named SVHRSP (Scorpion Venom Heat-Resistant Peptide). SVHRSP has been demonstrated to display potent neuroprotective efficacy in Parkinson's disease. AIM OF THE STUDY: To explore the molecular mechanisms and potential molecular targets of SVHRSP-afforded neuroprotection in PD mouse models, as well as to investigate the role of NLRP3 in SVHRSP-mediated neuroprotection. MATERIALS AND METHODS: The PD mouse model was induced by rotenone and the neuroprotective role of SVHRSP on the PD mouse model was measured using the gait test, rotarod test, the number of dopaminergic neurons, and the activation of microglia. RNA sequencing and GSEA analysis were performed to find the differentially biological pathways regulated by SVHRSP. Primary mid-brain neuron-glial cultures and NLRP3-/- mice were applied to verify the role of NLRP3 by using qRT-PCR, western blotting, enzyme-linked immunosorbent assay (ELISA) and immunostaining. RESULTS: SVHRSP-afforded dopaminergic neuroprotection was accompanied with inhibition of microglia-mediated neuroinflammatory pathways. Importantly, depletion of microglia markedly reduced the neuroprotective efficacy of SVHRSP against rotenone-induced dopaminergic neurotoxicity in vitro. SVHRSP inhibited microglial NOD-like receptor pathway, mRNA expression and protein level of NLRP3 in rotenone PD mice. SVHRSP also reduced rotenone-induced caspse-1 activation and IL-1ß maturation, indicating that SVHRSP mitigated activation of NLRP3 inflammasome. Moreover, inactivation of NLRP3 inflammasome by MCC950 or genetic deletion of NLRP3 almost abolished SVHRSP-afforded anti-inflammatory, neuroprotective effects and improvement of motor performance in response to rotenone. CONCLUSIONS: NLRP3 mediated the neuroprotective effects of SVHRSP in rotenone-induced experimental PD model, providing additional evidence for the mechanisms of SVHRSP-afforded anti-inflammatory and neuroprotective effects in PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Venenos de Escorpião , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Rotenona/toxicidade , Venenos de Escorpião/farmacologia , Microglia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
20.
Foods ; 12(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38002235

RESUMO

Wheat is extensively utilized in various processed foods due to unique proteins forming from the gluten network. The gluten network in food undergoes morphological and molecular structural changes during food processing, affecting the final quality and digestibility of the food. The present review introduces the formation of the gluten network and the role of gluten in the key steps of the production of several typical food products such as bread, pasta, and beer. Also, it summarizes the factors that affect the digestibility of gluten, considering that different processing conditions probably affect its structure and properties, contributing to an in-depth understanding of the digestion of gluten by the human body under various circumstances. Nevertheless, consumption of gluten protein may lead to the development of celiac disease (CD). The best way is theoretically proposed to prevent and treat CD by the inducement of oral tolerance, an immune non-response system formed by the interaction of oral food antigens with the intestinal immune system. This review proposes the restoration of oral tolerance in CD patients through adjunctive dietary therapy via gluten-encapsulated/modified dietary polyphenols. It will reduce the dietary restriction of gluten and help patients achieve a comprehensive dietary intake by better understanding the interactions between gluten and food-derived active products like polyphenols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA