Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 34(4): e2979, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710618

RESUMO

Knowledge of interspecific and spatiotemporal variation in demography-environment relationships is key for understanding the population dynamics of sympatric species and developing multispecies conservation strategies. We used hierarchical random-effects models to examine interspecific and spatial variation in annual productivity in six migratory ducks (i.e., American wigeon [Mareca americana], blue-winged teal [Spatula discors], gadwall [Mareca strepera], green-winged teal [Anas crecca], mallard [Anas platyrhynchos] and northern pintail [Anas acuta]) across six distinct ecostrata in the Prairie Pothole Region of North America. We tested whether breeding habitat conditions (seasonal pond counts, agricultural intensification, and grassland acreage) or cross-seasonal effects (indexed by flooded rice acreage in primary wintering areas) better explained variation in the proportion of juveniles captured during late summer banding. The proportion of juveniles (i.e., productivity) was highly variable within species and ecostrata throughout 1961-2019 and generally declined through time in blue-winged teal, gadwall, mallard, pintail, and wigeon, but there was no support for a trend in green-winged teal. Productivity in Canadian ecostrata declined with increasing agricultural intensification and increased with increasing pond counts. We also found a strong cross-seasonal effect, whereby more flooded rice hectares during winter resulted in higher subsequent productivity. Our results suggest highly consistent environmental and anthropogenic effects on waterfowl productivity across species and space. Our study advances our understanding of current year and cross-seasonal effects on duck productivity across a suite of species and at finer spatial scales, which could help managers better target working-lands conservation programs on both breeding and wintering areas. We encourage other researchers to evaluate environmental drivers of population dynamics among species in a single modeling framework for a deeper understanding of whether conservation plans should be generalized or customized given limited financial resources.


Assuntos
Patos , Animais , Patos/fisiologia , Ecossistema , Estações do Ano , Efeitos Antropogênicos , Dinâmica Populacional , Especificidade da Espécie
2.
J Anim Ecol ; 88(10): 1625-1637, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31173349

RESUMO

Knowledge of land-use patterns that could affect animal population resiliency or vulnerability to environmental threats such as climate change is essential, yet the interactive effects of land use and climate on demography across space and time can be difficult to study. This is particularly true for migratory species, which rely on different landscapes throughout the year. Unlike most North American migratory waterfowl, populations of northern pintails (Anas acuta; hereafter pintails) have not recovered since the 1980s despite extended periods of abundant flooded wetlands (i.e. ponds). The mechanisms and drivers involved in this discrepancy remain poorly understood. While pintails are similar to other ducks in their dependence on ponds throughout their annual cycle, their extensive use of croplands for nesting differentiates them and makes them particularly vulnerable to changes in agricultural land use on prairie breeding grounds. Our intent was to quantify how changes in land use and ponds on breeding grounds have influenced pintail population dynamics by developing an integrated population model to analyse over five decades (1961-2014) of band-recovery, breeding population survey, land-use and pond count data. We focused especially on the interactive effects of pond counts and land use on pintail productivity, while accounting for density-dependent processes. Pintail populations responded more strongly to annual variation in productivity than survival. Productivity was positively correlated with pond count and negatively correlated with agricultural intensification. Further, a positive interaction between pond count and agricultural intensification was insufficient to overcome the strong negative effect of agricultural intensification on pintail productivity across nearly all pond counts. The interaction also indicated that pintail populations were more negatively impacted by the decrease in ponds associated with climate change under higher agricultural intensification. Our results indicate that pintail populations have become more vulnerable to climate change under intensified land use, which suggests that future conservation strategies must adapt to these altered relationships. The interactive effects of land use and climate on demography should be considered more frequently in animal ecology, and integrated population models provide an adaptable framework to understand vital rates and their drivers simultaneously.


Assuntos
Aves , Mudança Climática , Animais , Lagoas , Dinâmica Populacional , Áreas Alagadas
3.
Oecologia ; 191(1): 217-229, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31435755

RESUMO

Climate change is altering global temperature and precipitation regimes, and the ability of species to respond to these changes could have serious implications for population dynamics. Flexible species may adjust breeding dates in response to advances in spring phenology. Furthermore, in migratory bird species, conditions experienced during the non-breeding season may have cross-seasonal effects during the subsequent breeding season. We evaluated species-specific responses to antecedent non-breeding (winter) and current breeding (spring) conditions. We used a data set composed of 21,230 duck nests from 164 sites in the Canadian Prairie Pothole Region, 1993-2011, to determine how environmental conditions influenced timing of nesting and subsequent nest survival in eight duck species representing varying life-histories. We tested how species responded in timing of nesting and nest survival, respectively, to El Niño Southern Oscillation (ENSO) conditions experienced during the preceding non-breeding season (winter; Dec-Feb), and spring (Mar-Jun) temperature and moisture conditions on the breeding grounds. Ducks tended to nest earlier in warmer springs; however, in El Niño winters, with warmer spring temperatures, nesting tended to be later. We did not find evidence for direct effects of environmental variables on nest survival; however, evidence of indirect effects of winter conditions on nest survival for some species via strong direct effects on timing of nesting provides new insights into mechanisms for cross-seasonal effects on reproductive success.


Assuntos
Aves , Reprodução , Animais , Canadá , Mudança Climática , El Niño Oscilação Sul , Estações do Ano
4.
PLoS One ; 10(2): e0116735, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25714747

RESUMO

We used publically available data on duck breeding distribution and recently compiled geospatial data on upland habitat and environmental conditions to develop a spatially explicit model of breeding duck populations across the entire Prairie Pothole Region (PPR). Our spatial population models were able to identify key areas for duck conservation across the PPR and predict between 62.1-79.1% (68.4% avg.) of the variation in duck counts by year from 2002-2010. The median difference in observed vs. predicted duck counts at a transect segment level was 4.6 ducks. Our models are the first seamless spatially explicit models of waterfowl abundance across the entire PPR and represent an initial step toward joint conservation planning between Prairie Pothole and Prairie Habitat Joint Ventures. Our work demonstrates that when spatial and temporal variation for highly mobile birds is incorporated into conservation planning it will likely increase the habitat area required to support defined population goals. A major goal of the current North American Waterfowl Management Plan and subsequent action plan is the linking of harvest and habitat management. We contend incorporation of spatial aspects will increase the likelihood of coherent joint harvest and habitat management decisions. Our results show at a minimum, it is possible to produce spatially explicit waterfowl abundance models that when summed across survey strata will produce similar strata level population estimates as the design-based Waterfowl Breeding Pair and Habitat Survey (r2 = 0.977). This is important because these design-based population estimates are currently used to set duck harvest regulations and to set duck population and habitat goals for the North American Waterfowl Management Plan. We hope this effort generates discussion on the important linkages between spatial and temporal variation in population size, and distribution relative to habitat quantity and quality when linking habitat and population goals across this important region.


Assuntos
Cruzamento , Conservação dos Recursos Naturais , Patos , Animais , Canadá , Geografia , Modelos Teóricos , Densidade Demográfica , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA