Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biometeorol ; 67(7): 1225-1235, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37178345

RESUMO

High temperatures have become common in cities in Taiwan, and this phenomenon has spread to surrounding agricultural areas. Tainan, a city located in a tropical climate zone with agriculture as its primary development industry, is one of the cities considerably affected by the high temperature. High temperatures can reduce crop yields and even cause plant death, especially for vulnerable high-value crops, which are severely to microclimate conditions. Asparagus is a high-value crop that has long been cultivated in the Jiangjun District of Tainan. Recently, asparagus has been planted in greenhouses to protect against pests and natural disasters. However, the greenhouses can overheat. To identify the optimal growth environment for asparagus, this study applies vertical monitoring to record the temperature in the greenhouse and the soil moisture content of a control (canal irrigation) and an experimental (drip irrigation) group. When the surface layer of the soil exceeds 33°C, the tender stems of asparagus bloom readily, reducing its commercial value. Therefore, drip irrigation was conducted with cool water (26°C) to reduce soil temperature in summer and warm water (28°C) to increase soil temperature in winter. The study also recorded the growth of asparagus using daily yields measured by farmers during weighing and packing to understand the benefits of controlling the greenhouse microclimate. This study reports a correlation of 0.85 between asparagus yield and temperature and a correlation of 0.86 between asparagus yield and soil moisture content. The use of a drip irrigation system with a water temperature adjustment function not only saves up to 50% of water but also resulted in an average yield increase of 10% through maintaining stable soil moisture content and temperature. Therefore, the findings of this study can be applied to asparagus yields affected by high temperature and can solve the problems of poor quality in summer and low yield in winter.


Assuntos
Microclima , Clima Tropical , Solo , Agricultura/métodos , Água , Irrigação Agrícola
2.
Materials (Basel) ; 16(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176433

RESUMO

Thermoset glass fiber-reinforced polymers (GFRP) have been widely used in manufacturing and construction for nearly half a century, but the large amount of waste produced by this material is difficult to dispose of. In an effort to address this issue, this research investigates the reuse of thermoset GFRP waste in normal strength concrete (NSC) and controlled low-strength materials (CLSM). The mechanical performance and workability of the resulting concrete were also evaluated. To prepare the concrete specimens, the thermoset GFRP waste was first pulverized into granular pieces, which were then mixed with cement, fly ash, and water to form cylindrical concrete specimens. The results showed that when the proportion of thermoset GFRP waste aggregate in the concrete increased, the compressive strengths of NSC and CLSM would decrease. However, when incorporating 5% GFRP waste into CLSM, the compressive strength was 7% higher than concrete without GFRP. However, the workability of CLSM could be improved to meet engineering standards by adding an appropriate amount of superplasticizer. This finding suggests that the use of various combinations of proportions in the mixture during production could allow for the production of CLSM with different compressive strength needs. In addition, the use of recycled thermoset GFRP waste as a new aggregate replacement for traditional aggregates in CLSM was found to be a more sustainable alternative to the current CLSM combinations used in the market.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA