Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Asian J Androl ; 26(5): 451-463, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657119

RESUMO

ABSTRACT: Tumor metabolic reprogramming is a hallmark of cancer development, and targeting metabolic vulnerabilities has been proven to be an effective approach for castration-resistant prostate cancer (CRPC) treatment. Nevertheless, treatment failure inevitably occurs, largely due to cellular heterogeneity, which cannot be deciphered by traditional bulk sequencing techniques. By employing computational pipelines for single-cell RNA sequencing, we demonstrated that epithelial cells within the prostate are more metabolically active and plastic than stromal cells. Moreover, we identified that neuroendocrine (NE) cells tend to have high metabolic rates, which might explain the high demand for nutrients and energy exhibited by neuroendocrine prostate cancer (NEPC), one of the most lethal variants of prostate cancer (PCa). Additionally, we demonstrated through computational and experimental approaches that variation in mitochondrial activity is the greatest contributor to metabolic heterogeneity among both tumor cells and nontumor cells. These results establish a detailed metabolic landscape of PCa, highlight a potential mechanism of disease progression, and emphasize the importance of future studies on tumor heterogeneity and the tumor microenvironment from a metabolic perspective.


Assuntos
Neoplasias da Próstata , Análise de Célula Única , Masculino , Humanos , Análise de Célula Única/métodos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Microambiente Tumoral , Mitocôndrias/metabolismo , Próstata/metabolismo , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Células Epiteliais/metabolismo
2.
Int Immunopharmacol ; 143(Pt 1): 113284, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39378657

RESUMO

Calcium oxalate (CaOx) crystals are the main constituents of renal crystals in humans and induce tubular lumen damage in renal tubules, leading to renal calcium deposition and kidney stone formation. Oxidative stress and inflammation play important roles in regulating calcium oxalate-induced injury. Here, we evaluated the efficacy in inhibiting oxidation and inflammation of pectinolinarigenin, a biologically active natural metabolite, in CaOx nephrocalcinosis and further explored its targets of action. First, we developed cellular and mouse models of calcium oxalate renal nephrocalcinosis and identified the onset of oxidative stress and inflammation according to experimental data. We found that pectolinarigenin inhibited this onset while reducing renal crystal deposition. Network pharmacology was subsequently utilized to screen for hypoxia-inducible factor-1α (HIF-1α), a regulator involved in the body's release and over-oxidation of inflammatory factors. Finally, molecular docking, cellular thermal shift assay, and other experiments to detect HIF-1α expression showed that pectolinarigenin directly combined with HIF-1α and prevented downstream reactive oxygen species activation and release. Our results indicate that pectolinarigenin can target and inhibit HIF-1α-mediated inflammatory responses and oxidative stress damage and be a novel drug for CaOx nephrocalcinosis treatment.

3.
Int Immunopharmacol ; 139: 112669, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39029231

RESUMO

BACKGROUND: Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is very common worldwide, and alcohol consumption is a notable contributing factor. Researches have shown that gut microbiota can be influenced by alcohol consumption and is an important mediator in regulating Th17 cell immunity. However, it is still unclear the exact mechanism by which alcohol exacerbates the CP/CPPS and the role of gut microbiota in this process. METHOD: We first constructed the most-commonly used animal model for CP/CPPS, the experimental autoimmune prostatitis (EAP) model, through immunoassay. Based on this, mice were divided into EAP group and alcohol-consuming EAP group. By 16S rRNA sequencing and non-targeted metabolomics analysis, differential gut microbiota and their metabolites between the two groups were identified. Subsequently, metabolomics detection targeting cholesterols was carried out to identify the exact difference in cholesterol. Furthermore, multiple methods such as flow cytometry and immunohistochemistry were used to detect the differentiation status of Th17 cells and severity of prostatitis treated with 27-hydroxycholesterol (the differential cholesterol) and its upstream regulatory factor-sterol regulatory element-binding protein 2 (SREBP2). Lastly, fecal transplantation was conducted to preliminary study on whether alcohol intake exacerbates EAP in immune receptor mice. RESULTS: Alcohol intake increased the proportion of Th17 cells and levels of related inflammatory factors. It also led to an altered gut bacterial richness and increased gut permeability. Further metabolomic analysis showed that there were significant differences in a variety of metabolites between EAP and alcohol-fed EAP mice. Metabolic pathway enrichment analysis showed that the pathways related to cholesterol synthesis and metabolism were significantly enriched, which was subsequently confirmed by detecting the expression of metabolic enzymes. By targeting cholesterol synthesis, 27-hydroxycholesterol was significantly increased in alcohol-fed EAP mice. Subsequent mechanistic research showed that supplementation with 27-hydroxycholesterol could aggravate EAP and promote Th17 cell differentiation both in vivo and in vitro, which is regulated by SREBP2. In addition, we observed that fecal transplantation from mice with alcohol intake aggravated EAP in immunized recipient mice fed a normal diet. CONCLUSION: Our study is the first to show that alcohol intake promotes Th17 cell differentiation and exacerbates EAP through microbiota-derived cholesterol biosynthesis.


Assuntos
Consumo de Bebidas Alcoólicas , Doenças Autoimunes , Diferenciação Celular , Colesterol , Modelos Animais de Doenças , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Prostatite , Células Th17 , Animais , Masculino , Células Th17/imunologia , Prostatite/imunologia , Prostatite/microbiologia , Prostatite/metabolismo , Prostatite/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/induzido quimicamente , Camundongos , Diferenciação Celular/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/efeitos adversos , Colesterol/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA