Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Pathol ; 194(7): 1388-1404, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38670529

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is a highly malignant neoplasm prone to metastasis. Whether cancer-associated fibroblasts (CAFs) affect the metastasis of ICC is unclear. Herein, ICC patient-derived CAF lines and related cancerous cell lines were established and the effects of CAFs on the tumor progressive properties of the ICC cancerous cells were analyzed. CAFs could be classified into cancer-restraining or cancer-promoting categories based on distinct tumorigenic effects. The RNA-sequencing analyses of ICC cancerous cell lines identified polycomb group ring finger 4 (PCGF4; alias BMI1) as a potential metastasis regulator. The changes of PCGF4 levels in ICC cells mirrored the restraining or promoting effects of CAFs on ICC migration. Immunohistochemical analyses on the ICC tissue microarrays indicated that PCGF4 was negatively correlated with overall survival of ICC. The promoting effects of PCGF4 on cell migration, drug resistance activity, and stemness properties were confirmed. Mechanistically, cancer-restraining CAFs triggered the proteasome-dependent degradation of PCGF4, whereas cancer-promoting CAFs enhanced the stability of PCGF4 via activating the IL-6/phosphorylated STAT3 pathway. In summary, the current data identified the role of CAFs in ICC metastasis and revealed a new mechanism of the CAFs on ICC progression in which PCGF4 acted as the key effector by both categories of CAFs. These findings shed light on developing comprehensive therapeutic strategies for ICC.


Assuntos
Neoplasias dos Ductos Biliares , Fibroblastos Associados a Câncer , Colangiocarcinoma , Complexo Repressor Polycomb 1 , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética , Movimento Celular , Metástase Neoplásica , Animais , Regulação Neoplásica da Expressão Gênica , Camundongos , Linhagem Celular Tumoral , Masculino , Fator de Transcrição STAT3/metabolismo
2.
BMC Geriatr ; 24(1): 437, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760712

RESUMO

OBJECTIVES: Motoric cognitive risk syndrome (MCR) is a pre-dementia condition characterized by subjective complaints in cognition and slow gait. Pain interference has previously been linked with cognitive deterioration; however, its specific relationship with MCR remains unclear. We aimed to examine how pain interference is associated with concurrent and incident MCR. METHODS: This study included older adults aged ≥ 65 years without dementia from the Health and Retirement Study. We combined participants with MCR information in 2006 and 2008 as baseline, and the participants were followed up 4 and 8 years later. The states of pain interference were divided into 3 categories: interfering pain, non-interfering pain, and no pain. Logistic regression analysis was done at baseline to examine the associations between pain interference and concurrent MCR. During the 8-year follow-up, Cox regression analysis was done to investigate the associations between pain interference and incident MCR. RESULTS: The study included 7120 older adults (74.6 ± 6.7 years; 56.8% females) at baseline. The baseline prevalence of MCR was 5.7%. Individuals with interfering pain had a significantly increased risk of MCR (OR = 1.51, 95% CI = 1.17-1.95; p = 0.001). The longitudinal analysis included 4605 participants, and there were 284 (6.2%) MCR cases on follow-up. Participants with interfering pain at baseline had a higher risk for MCR at 8 years of follow-up (HR = 2.02, 95% CI = 1.52-2.69; p < 0.001). CONCLUSIONS: Older adults with interfering pain had a higher risk for MCR versus those with non-interfering pain or without pain. Timely and adequate management of interfering pain may contribute to the prevention and treatment of MCR and its associated adverse outcomes.


Assuntos
Dor , Humanos , Feminino , Masculino , Idoso , Estudos de Coortes , Idoso de 80 Anos ou mais , Dor/epidemiologia , Dor/diagnóstico , Dor/psicologia , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/psicologia , Disfunção Cognitiva/diagnóstico , Fatores de Risco , Síndrome , Seguimentos , Estudos Longitudinais , Vigilância da População/métodos
3.
Biol Chem ; 404(1): 29-39, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36215729

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary human liver malignancy with high mortality. Liver cancer stem cells (CSCs) have been demonstrated to contribute to the recurrence, metastasis and drug resistance of liver cancer. Human HCC cohort analysis indicated that the epigenetic regulator polycomb chromobox homologue 4 (CBX4) was overexpressed in human HCC. Moreover, we found that CBX4 expression was significantly higher in CD44+ CD133+ Hep3B CSCs. Functionally, we demonstrated that CBX4 regulated cell proliferation, self-renewal, and metastasis ability of Hep3B CSCs. Bioinformatics analysis predicted that CBX4 was a direct target of microRNA-6838-5p (miR-6838-5p), which was further confirmed by luciferase reporter assay. MiR-6838-6p was down-regulated in HCC tumors and overexpression of miR-6838-5p attenuated the malignant traits of human liver CSCs in vitro. In addition, we found that miR-6838-5p/CBX4 axis modulates the biological properties of human liver CSCs via regulating ERK signaling. Overexpression of miR-6838-5p suppressed Hep3B xenograft tumor growth in vivo, while CBX4 overexpression abrogated the suppression effect, restored the angiogenesis, epithelial-to-mesenchymal transition (EMT), and ERK signaling in Hep3B tumor. In summary, our findings suggest that miR-6838-5p/CBX4 axis regulates liver tumor development and metastasis, which could be utilized as potential therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/patologia , Proliferação de Células , Ligases/metabolismo , Proteínas do Grupo Polycomb/metabolismo
4.
Cancer Cell Int ; 22(1): 418, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36578029

RESUMO

Patients with intrahepatic cholangiocarcinoma (ICC) require chemotherapy due to late detection, rapid disease progression, and low surgical resection rate. Tumor cell lines are extremely important in cancer research for drug discovery and development. Here, we established and characterized a new intrahepatic cholangiocarcinoma cell line, ICC-X1. STR testing confirmed the absence of cross-contamination and high similarity to the original tissue. ICC-X1 exhibited typical epithelial morphology and formed tumor spheres in the suspension culture. The population doubling time was approximately 48 h. The cell line had a complex hypotriploid karyotype. The cell line exhibited a strong migration ability in vitro and cell inoculation into BALB/c nude mice led to the formation of xenografts. Additionally, ICC-X1 cells were sensitive to gemcitabine and paclitaxel but resistant to 5-fluorouracil and oxaliplatin. RNA sequencing revealed that the upregulated cancer-related genes were mainly enriched in several signaling pathways, including the TNF signaling pathway, NOD-like receptor signaling pathway, and NF-κB signaling pathway. The downregulated cancer-related genes were mainly enriched in the Rap1 signaling pathway and Hippo signaling pathway among other pathways. In conclusion, we have created a new ICC cell line derived from Chinese patients. This cell line can be used as a preclinical model to study ICC, specifically tumor metastasis and drug resistance mechanisms.

5.
Prep Biochem Biotechnol ; 52(6): 648-656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34694209

RESUMO

In the present study, ultrasound-assisted extraction was employed to extract the general flavone from celery leaves using response surface methodology and BP neural network model with a genetic algorithm (GA). The effects of temperature, time, solid-liquid ratio, and ethanol concentration on the extraction results were assessed by Box-Behnken design. Further optimization of the process was performed by GA-BP. Our results showed that the optimal conditions were an ethanol concentration of 70.31%, a temperature of 67.2 °C and an extraction time of 26.6 min. In addition, significant antioxidant activity and in vitro bacteriostasis were observed. We found that the total flavonoids of the celery leaves exerted a strong inhibitory effect on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. Additionally, considerable DPPH· and ·OH scavenging effects were exerted by flavonoids. Therefore, flavonoids from celery leaves can be considered natural antioxidants and bacterial inhibitors.


Assuntos
Apium , Flavonoides , Extratos Vegetais , Folhas de Planta , Algoritmos , Apium/química , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Etanol/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Redes Neurais de Computação , Extratos Vegetais/farmacologia , Folhas de Planta/química , Staphylococcus aureus/efeitos dos fármacos , Temperatura , Fatores de Tempo
6.
Cancer Cell Int ; 21(1): 502, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34537070

RESUMO

BACKGROUND: Accumulating evidence demonstrates that tRFs (tRNA-derived small RNA fragments) and tiRNAs (tRNA-derived stress-induced RNA), an emerging category of regulatory RNA molecules derived from transfer RNAs (tRNAs), are dysregulated in in various human cancer types and play crucial roles. However, their roles and mechanisms in hepatocellular carcinoma (HCC) and liver cancer stem cells (LCSCs) are still unknown. METHODS: The expression of glycine tRNA-derived fragment (Gly-tRF) was measured by qRT-PCR. Flow cytometric analysis and sphere formation assays were used to determine the properties of LCSCs. Transwell assays and scratch wound assays were performed to detect HCC cell migration. Western blotting was conducted to evaluate the abundance change of Epithelial-mesenchymal transition (EMT)-related proteins. Dual luciferase reporter assays and signalling pathway analysis were performed to explore the underlying mechanism of Gly-tRF functions. RESULTS: Gly-tRF was highly expressed in HCC cell lines and tumour tissues. Gly-tRF mimic increased the LCSC subpopulation proportion and LCSC-like cell properties. Gly-tRF mimic promoted HCC cell migration and EMT. Loss of Gly-tRF inhibited HCC cell migration and EMT. Mechanistically, Gly-tRF decreased the level of NDFIP2 mRNA by binding to the NDFIP2 mRNA 3' UTR. Importantly, overexpression of NDFIP2 weakened the promotive effects of Gly-tRF on LCSC-like cell sphere formation and HCC cell migration. Signalling pathway analysis showed that Gly-tRF increased the abundance of phosphorylated AKT. CONCLUSIONS: Gly-tRF enhances LCSC-like cell properties and promotes EMT by targeting NDFIP2 and activating the AKT signalling pathway. Gly-tRF plays tumor-promoting role in HCC and may lead to a potential therapeutic target for HCC.

7.
Neoplasma ; 68(2): 325-333, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33350850

RESUMO

It is generally believed that the existence of cancer stem cells (CSCs) is related to tumor recurrence and metastasis of hepatocellular carcinoma (HCC). Neuropilin1 (NRP1) is involved in numerous pathophysiological processes of tumor progression, however, whether NRP1 is involved in the regulation of liver CSCs and metastasis of HCC is still unknown. In the present study, we examined the effect of NRP1 on the population of liver CSCs and the metastasis mechanism of HCC. In NRP1 small hairpin RNA (shRNA)-transduced HCC cells, liver CSCs surface markers (CD133+/ EpCAM+/CD13+/CD44+) expressing cells, which imply the CSCs population, were decreased. Transwell assay and nude mouse liver orthotopic transplantation model confirmed that NRP1 knockdown inhibited HCC cells' migration and lung metastasis. Our data showed that the expression of NRP1 was upregulated in 5 independent cohorts of HCC patients, consequently, high levels of NRP1 correlated with recurrence and poor prognosis in HCC. Mechanism research showed that NRP1 promotes cell spreading through the epithelial-mesenchymal transition (EMT) signaling pathway. In summary, NRP1 enhanced the population of liver CSCs and migration of HCC via EMT, indicating that NRP1 might be a novel target for HCC treatments.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neuropilina-1/fisiologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/secundário , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Recidiva Local de Neoplasia/genética , Células-Tronco Neoplásicas/patologia , Neuropilina-1/genética
8.
Tumour Biol ; 36(9): 7007-15, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25861753

RESUMO

A possible association between multiple drug resistance 1 gene (MDR1) polymorphisms and the risk of developing hepatocellular carcinoma (HCC) is currently under debate, and evidence from various epidemiological studies has yielded controversial results. To derive a more precise estimation of the association between MDR1 polymorphisms and HCC risk, the present meta-analysis was performed. A total of 8 studies containing 11 cohorts with 4407 cases and 4436 controls were included by systematic literature search of EMBASE, PubMed, Web of Science, and CNKI. All polymorphisms were classified as mutant/wild-type alleles. In particular, the variation type, functional impact, and protein domain location of the polymorphisms were assessed and used as stratified indicators. The pooled odds ratio (OR) with 95 % confidence interval (CI) was calculated to evaluate the association. Overall, our results suggested that the mutant alleles of the MDR1 gene were associated with a significantly increased risk for HCC under all genetic models (allelic model: OR = 1.28, 95 % CI = 1.20-1.36, P < 0.001; dominant model: OR = 1.27, 95 % CI = 1.16-1.38, P < 0.001; recessive model: OR = 1.59, 95 % CI = 1.36-1.85, P < 0.001). Furthermore, increased risks for HCC were also revealed in stratified analyses by ethnicity, sample size, and quality scores of cohorts as well as variation type, functional impact, and protein domain location of polymorphisms. In conclusion, the present meta-analysis suggested that the presence of MDR1 mutant alleles might be a risk factor for HCC.


Assuntos
Carcinoma Hepatocelular/genética , Resistência a Múltiplos Medicamentos/genética , Neoplasias Hepáticas/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Etnicidade , Predisposição Genética para Doença , Genótipo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Polimorfismo de Nucleotídeo Único , Fatores de Risco
9.
Sci Rep ; 14(1): 11008, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744845

RESUMO

Multiple studies have shown knockdown of chromobox 7 (CBX7) promotes the regenerative capacity of various cells or tissues. We examined the effect of CBX7 on hepatocyte proliferation and liver regeneration after 2/3 hepatectomy in a mouse model. For in vitro experiments, NCTC 1469 and BNL CL.2 hepatocytes were co-transfected with siRNA-CBX7-1 (si-CBX7-1), siRNA-CBX7-2 (si-CBX7-2), pcDNA-CBX7, si-BMI1-1, si-BMI1-2, pcDNA-BMI1, or their negative control. For in vivo experiments, mice were injected intraperitoneally with lentivirus-packaged shRNA and shRNA CBX7 before hepatectomy. Our results showed that CBX7 was rapidly induced in the early stage of liver regeneration. CBX7 regulated hepatocyte proliferation, cell cycle, and apoptosis of NCTC 1469 and BNL CL.2 hepatocytes. CBX7 interacted with BMI1 and inhibited BMI1 expression in hepatocytes. Silencing BMI1 aggregated the inhibitory effect of CBX7 overexpression on hepatocyte viability and the promotion of apoptosis. Furthermore, silencing BMI1 enhanced the regulatory effect of CBX7 on Nrf2/ARE signaling in HGF-induced hepatocytes. In vivo, CBX7 silencing enhanced liver/body weight ratio in PH mice. CBX7 silencing promoted the Ki67-positive cell count and decreased the Tunel-positive cell count after hepatectomy, and also increased the expression of nuclear Nrf2, HO-1, and NQO-1. Our results suggest that CBX7 silencing may increase survival following hepatectomy by promoting liver regeneration.


Assuntos
Apoptose , Proliferação de Células , Hepatócitos , Regeneração Hepática , Fator 2 Relacionado a NF-E2 , Complexo Repressor Polycomb 1 , Transdução de Sinais , Animais , Camundongos , Apoptose/genética , Inativação Gênica , Hepatectomia , Hepatócitos/metabolismo , Fígado/metabolismo , Regeneração Hepática/genética , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
10.
J Agric Food Chem ; 72(19): 10853-10861, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708871

RESUMO

The purpose of this study was to investigate the antibacterial activity and mechanism of action of osthole against Listeria monocytogenes. The antibacterial activity of osthole was evaluated by determining the minimum inhibitory concentration (MIC) and growth curve. Cell morphology, membrane permeability, membrane integrity, bacterial physiology, and metabolism were explored using different methods to elucidate the mechanism of action of osthole. It was shown that the MIC of osthole against L. monocytogenes was 62.5 µg/mL and it inhibited the growth of L. monocytogenes effectively in a concentration-dependent manner. Scanning electron microscopy (SEM) images demonstrated morphology changes of L. monocytogenes, including rough surface, cell shrinkage, and rupture. It was found that extracellular conductivity and macromolecule content were increased significantly in the presence of osthole, indicating the disruption of cell membrane integrity and permeability. Laser confocal microscopy results supported the conclusion that osthole caused severe damage to the cell membrane. It was also noticed that osthole depleted intracellular adenosine triphosphate (ATP), inhibited Na+-K+-ATPase and Ca2+-Mg2+-ATPase activity, and promoted the accumulation of intracellular reactive oxygen species (ROS), leading to cell death. This study suggests that osthole is a promising antibacterial agent candidate against L. monocytogenes, and it shows potential in the prevention and control of foodborne pathogens.


Assuntos
Antibacterianos , Cumarínicos , Listeria monocytogenes , Testes de Sensibilidade Microbiana , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antibacterianos/química , Cumarínicos/farmacologia , Cumarínicos/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo
11.
Front Neurosci ; 18: 1369996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694896

RESUMO

Background: Previous evidence suggests a link between gut microbiota and chronic pain, but the causal relationship is not yet fully understood. Methods: We categorized gut microbiota based on phylum, class, order, family, and genus levels and gathered pain-related information from the UKB and FinnGen GWAS project. Then, we conducted MR analysis to explore the potential causal relationship between gut microbiota and chronic pain at 12 specific locations. Results: We have discovered a direct connection between genetic susceptibility in the gut microbiota (gut metabolites) and pain experienced at 12 specific locations. Notably, Serotonin (5-HT) and Glycine were found to be associated with a higher risk of pain in the extremities. On the other hand, certain microbial families and orders were found to have a protective effect against migraines. Specifically, the family Bifidobacteriaceae (IVW, FDR p = 0.013) was associated with a lower risk of migraines. Furthermore, the genus Oxalobacter (IVW, FDR p = 0.044) was found to be linked to an increased risk of low back pain. Importantly, these associations remained significant even after applying the Benjamini-Hochberg correction test. Our analysis did not find any heterogeneity in the data (p > 0.05), as confirmed by the Cochrane's Q-test. Additionally, both the MR-Egger and MR-PRESSO tests indicated no significant evidence of horizontal pleiotropy (p > 0.05). Conclusion: Our MR analysis demonstrated a causal relationship between the gut microbiota and pain, highlighting its potential significance in advancing our understanding of the underlying mechanisms and clinical implications of microbiota-mediated pain.

12.
J Colloid Interface Sci ; 678(Pt C): 819-828, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39312870

RESUMO

Traditional kinesiology tape (KT) is an elastic fabric tape that clinicians and sports trainers widely use for managing ankle sprains. However, inadequate mechanical properties, adhesive strength, water resistance, and micro-damage generation could affect the longevity of the tape on the skin during physical activity and sweating. Therefore, autonomous room-temperature self-healing elastomers with robust mechanical properties and adequate adhesion to the skin are highly desirable to replace traditional KT. Ionic aggregates were introduced into the polymer matrix via electrostatic attraction between polymer colloid and polyelectrolyte to achieve such elastic tape. These ionic aggregates act as physical crosslink points to enhance mechanical properties and dissociate at room temperature to provide self-healing functions. The obtained elastic tape possesses a tensile strength of 3.7 MPa, elongation of 940 %, toughness of 16.6 MJ∙m-3, and self-healing efficiency of 90 % for 2 h at room temperature. It also exhibits adequate reversible adhesion on the skin via van der Waals force and electrostatic interaction in both dry and wet conditions. The new elastic tapes have great potential in biomedical engineering for preventing and rehabilitating ankle sprain.

13.
Front Bioeng Biotechnol ; 12: 1377767, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817923

RESUMO

Low back pain (LBP) is one of the most prevalent and disabling disease worldwide. However, the specific biomechanical changes due to LBP are still controversial. The purpose of this study was to estimate the lumbar and lower limb kinematics, lumbar moments and loads, muscle forces and activation during walking in healthy adults and LBP. A total of 18 healthy controls and 19 patients with chronic LBP were tested for walking at a comfortable speed. The kinematic and dynamic data of the subjects were collected by 3D motion capture system and force plates respectively, and then the motion simulation was performed by OpenSim. The OpenSim musculoskeletal model was used to calculate lumbar, hip, knee and ankle joint angle variations, lumbar moments and loads, muscle forces and activation of eight major lumbar muscles. In our results, significant lower lumbar axial rotation angle, lumbar flexion/extension and axial rotation moments, as well as the muscle forces of the four muscles and muscle activation of two muscles were found in patients with LBP than those of the healthy controls (p < 0.05). This study may help providing theoretical support for the evaluation and rehabilitation treatment intervention of patients with LBP.

14.
Brain Behav ; 14(7): e3568, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988039

RESUMO

BACKGROUND: Hypertension increases the risk of cognitive impairment and related dementia, causing impaired executive function and unusual gait parameters. However, the mechanism of neural function illustrating this is unclear. Our research aimed to explore the differences of cerebral cortex activation, gait parameters, and working memory performance between healthy older adults (HA) and older hypertensive (HT) patients when performing cognitive and walking tasks. METHOD: A total of 36 subjects, including 12 healthy older adults and 24 older hypertensive patients were asked to perform series conditions including single cognitive task (SC), single walking task (SW), and dual-task (DT), wearing functional near-infrared spectroscopy (fNIRS) equipment and Intelligent Device for Energy Expenditure and Activity equipment to record cortical hemodynamic reactions and various gait parameters. RESULTS: The left somatosensory cortex (L-S1) and bilateral supplementary motor area (SMA) showed higher cortical activation (p < .05) than HA when HT performed DT. The intragroup comparison showed that HT had higher cortical activation (p < .05) when performing DT as SW. The cognitive performance of HT was significantly worse (p < .05) than HA when executing SC. The activation of the L-S1, L-M1, and bilateral SMA in HT were significantly higher during SW (p < .05). CONCLUSION: Hypertension can lead to cognitive impairment in the elderly, including executive function and walking function decline. As a result of these functional declines, elderly patients with hypertension are unable to efficiently allocate brain resources to support more difficult cognitive interference tasks and need to meet more complex task demands by activating more brain regions.


Assuntos
Córtex Cerebral , Marcha , Hipertensão , Espectroscopia de Luz Próxima ao Infravermelho , Caminhada , Humanos , Idoso , Masculino , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Feminino , Hipertensão/fisiopatologia , Marcha/fisiologia , Caminhada/fisiologia , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade , Cognição/fisiologia , Função Executiva/fisiologia , Desempenho Psicomotor/fisiologia
15.
Exp Biol Med (Maywood) ; 249: 10129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993198

RESUMO

Neurological pain (NP) is always accompanied by symptoms of depression, which seriously affects physical and mental health. In this study, we identified the common hub genes (Co-hub genes) and related immune cells of NP and major depressive disorder (MDD) to determine whether they have common pathological and molecular mechanisms. NP and MDD expression data was downloaded from the Gene Expression Omnibus (GEO) database. Common differentially expressed genes (Co-DEGs) for NP and MDD were extracted and the hub genes and hub nodes were mined. Co-DEGs, hub genes, and hub nodes were analyzed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Finally, the hub nodes, and genes were analyzed to obtain Co-hub genes. We plotted Receiver operating characteristic (ROC) curves to evaluate the diagnostic impact of the Co-hub genes on MDD and NP. We also identified the immune-infiltrating cell component by ssGSEA and analyzed the relationship. For the GO and KEGG enrichment analyses, 93 Co-DEGs were associated with biological processes (BP), such as fibrinolysis, cell composition (CC), such as tertiary granules, and pathways, such as complement, and coagulation cascades. A differential gene expression analysis revealed significant differences between the Co-hub genes ANGPT2, MMP9, PLAU, and TIMP2. There was some accuracy in the diagnosis of NP based on the expression of ANGPT2 and MMP9. Analysis of differences in the immune cell components indicated an abundance of activated dendritic cells, effector memory CD8+ T cells, memory B cells, and regulatory T cells in both groups, which were statistically significant. In summary, we identified 6 Co-hub genes and 4 immune cell types related to NP and MDD. Further studies are needed to determine the role of these genes and immune cells as potential diagnostic markers or therapeutic targets in NP and MDD.


Assuntos
Biologia Computacional , Transtorno Depressivo Maior , Biologia de Sistemas , Humanos , Transtorno Depressivo Maior/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Neuralgia/genética , Neuralgia/metabolismo , Redes Reguladoras de Genes , Ontologia Genética , Mapas de Interação de Proteínas/genética , Bases de Dados Genéticas
16.
Cell Death Dis ; 15(3): 189, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443347

RESUMO

Evidence for the involvement of N6-Methyladenosine (m6A) modification in the etiology and progression of liver fibrosis has emerged and holds promise as a therapeutic target. Insulin-like growth factor 2 (IGF2) mRNA-binding protein 2 (IGF2BP2) is a newly identified m6A-binding protein that functions to enhance mRNA stability and translation. However, its role as an m6A-binding protein in liver fibrosis remains elusive. Here, we observed that IGF2BP2 is highly expressed in liver fibrosis and activated hepatic stellate cells (HSCs), and inhibition of IGF2BP2 protects against HSCs activation and liver fibrogenesis. Mechanistically, as an m6A-binding protein, IGF2BP2 regulates the expression of Aldolase A (ALDOA), a key target in the glycolytic metabolic pathway, which in turn regulates HSCs activation. Furthermore, we observed that active glycolytic metabolism in activated HSCs generates large amounts of lactate as a substrate for histone lactylation. Importantly, histone lactylation transforms the activation phenotype of HSCs. In conclusion, our findings reveal the essential role of IGF2BP2 in liver fibrosis by regulating glycolytic metabolism and highlight the potential of targeting IGF2BP2 as a therapeutic for liver fibrosis.


Assuntos
Células Estreladas do Fígado , Histonas , Humanos , Cirrose Hepática/genética , Ácido Láctico , Proteínas de Ligação a RNA/genética
17.
Eur J Med Res ; 29(1): 75, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268044

RESUMO

BACKGROUND: Alzheimer's disease is one common type of dementia. Numerous studies have suggested a correlation between Alzheimer's disease and inflammation. Microglia mainly participate in the inflammatory response in the brain. Currently, ample evidence has shown that microglia are closely related to the occurrence and development of Alzheimer's disease. OBJECTIVE: We opted for bibliometric analysis to comprehensively summarize the advancements in the study of microglia in Alzheimer's disease, aiming to provide researchers with current trends and future research directions. METHODS: All articles and reviews pertaining to microglia in Alzheimer's disease from 2000 to 2022 were downloaded through Web of Science Core Collection. The results were subjected to bibliometric analysis using VOSviewer 1.6.18 and CiteSpace 6.1 R2. RESULTS: Overall, 7449 publications were included. The number of publications was increasing yearly. The United States has published the most publications. Harvard Medical School has published the most papers of all institutions. Journal of Alzheimer's Disease and Journal of Neuroscience were the journals with the most studies and the most commonly cited, respectively. Mt Heneka is the author with the highest productivity and co-citation. After analysis, the most common keywords are neuroinflammation, amyloid-beta, inflammation, neurodegeneration. Gut microbiota, extracellular vesicle, dysfunction and meta-analysis are the hotspots of research at the present stage and are likely to continue. CONCLUSION: NLRP3 inflammasome, TREM2, gut microbiota, mitochondrial dysfunction, exosomes are research hotspots. The relationship between microglia-mediated neuroinflammation and Alzheimer's disease have been the focus of current research and the development trend of future research.


Assuntos
Doença de Alzheimer , Humanos , Bibliometria , Inflamação , Microglia , Doenças Neuroinflamatórias
18.
Hum Cell ; 37(5): 1578-1592, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39012569

RESUMO

In this study, a novel pancreatic cancer cell line, termed pancreatic ductal adenocarcinoma (PDAC)-X3 cell line, was successfully derived from the primary tumor. Comprehensive analyses of its malignant phenotype, molecular properties, specific biomarkers, and histological features confirmed that PDAC-X3 cells serve as a valuable model for investigating the underlying mechanisms driving pancreatic carcinogenesis and advancing potential therapeutic strategies. The newly established cell line was continuously cultured for over 12 months and was stably passaged through more than 50 generations. Morphologically, PDAC-X3 cells displayed characteristics typical of epithelial tumors. The population doubling time for PDAC-X3 cells was determined to be 50 h. Karyotype analysis revealed that 75% of PDAC-X3 cells presented as hypotriploid, while 25% were sub-tetraploid, with representative karyotypes being 53 and XY der (1) inv (9) der (22). In suspension culture, PDAC-X3 cells efficiently formed organoids. Upon inoculation into BALB/C nude mice, these cells initiated the development of xenograft tumors, achieving a tumor formation rate of 33%. Morphologically, these xenografted tumors closely resembled the primary tumor. Drug sensitivity assays indicated that PDAC-X3 cells exhibited resistance to oxaliplatin but demonstrated sensitivity to 5-Fluorouracil (5-FU), gemcitabine, and paclitaxel. Immunohistochemical analysis revealed that CK7, CK19, E-cadherin, Vimentin, CA19-9 were positively expressed in PDAC-X3 cells. Meanwhile, the expression rate for Ki-67 was 30%, and that for CEA was not detected. Our findings underscore that PDAC-X3 represents a novel pancreatic cancer cell line, positioning it as a valuable model for basic research and the advancement of therapeutic strategies against pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Fluoruracila , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Humanos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Animais , Fluoruracila/farmacologia , Paclitaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos , Gencitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Xenoenxertos , Oxaliplatina/farmacologia , Transplante de Neoplasias , População do Leste Asiático
19.
Hum Cell ; 37(2): 531-545, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253956

RESUMO

Mixed-type ampullary cancer is a distinct subtype of ampullary cancer that manifests a merging of the biological characteristics of both intestinal and pancreaticobiliary subtypes. The absence of established cell lines specific to this subtype has resulted in a concomitant scarcity of research on its tumorigenic mechanisms and the development of novel therapeutic modalities. The present study achieved the successful establishment of a novel mixed-type ampullary cancer cell line, designated DPC-X4 through primary culture techniques. Subsequent analyses pertaining to phenotypic characteristics, molecular profiling, biomarker identification, and histological features validated the DPC-X4 cell line as a potent model for delineating the pathogenesis of mixed-type ampullary cancer and facilitating the development of new pharmacological agents. This newly established cell line was subjected to continuous cultivation for 1 year, with stable passaging for over 50 generations. Notably, the DPC-X4 cell line manifested typical morphological features associated with epithelial tumors. Furthermore, the population doubling time for the DPC-X4 cell line was determined at 70 h. Short tandem repeat (STR) analysis confirmed that the DPC-X4 cell line exhibited a high genetic concordance with the primary tumor from the patient. Karyotypic profiling indicated an abnormal sub-triploid karyotype, with representative karyotypes of 57, XXY inv (9), 14p + , 15p + , der (17), + mar. The DPC-X4 cell line demonstrated a high capacity for efficient organoid formation under suspension culture conditions. In addition, the subcutaneous inoculation of DPC-X4 cells into NXG mice led to the formation of xenografted tumors. The results of drug sensitivity testing indicated that DPC-X4 cells were sensitive to paclitaxel and resistant to oxaliplatin, 5-fluorouracil, and gemcitabine. Immunohistochemistry revealed positive expression of CK7, CK19, and CK20 in DPC-X4 cells, while CDX2 demonstrated negative expression. In addition, positive expression of E-cadherin and vimentin was identified in DPC-X4 cells, with a proliferation index indicated by Ki-67 at 70%. The findings of our study establish DPC-X4 as a novel mixed-type ampullary cancer cell line, which can serve as a potential experimental model for exploring the pathogenesis of ampullary cancer and the development of therapeutic drugs.


Assuntos
Ampola Hepatopancreática , Neoplasias do Ducto Colédoco , Neoplasias , Humanos , Animais , Camundongos , Biomarcadores Tumorais/metabolismo , Ampola Hepatopancreática/química , Ampola Hepatopancreática/metabolismo , Ampola Hepatopancreática/patologia , Neoplasias do Ducto Colédoco/genética , Neoplasias do Ducto Colédoco/metabolismo , Neoplasias do Ducto Colédoco/patologia , Neoplasias/patologia , Linhagem Celular , Linhagem Celular Tumoral
20.
Hum Cell ; 36(1): 434-445, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36152230

RESUMO

Hepatocellular carcinoma (HCC) is a highly aggressive and heterogeneous disease. Cell lines are commonly employed as in vitro models for cell type studies. However, the success rate of HCC primary culture establishment is low. In this study, we successfully established a liver cancer cell line, Hep-X1. Primary culture and passage of surgically removed tissues were used to establish hepatoma cell lines. Morphological examination, short tandem repeat (STR) analysis, immunohistochemical staining, doubling time, karyotype analysis, plate tumor formation experiments, organoid culture, and in vivo tumor formation investigations in animals were used to identify the cell lines. A novel liver cancer cell line, Hep-X1, was established based on morphology, immunophenotype, cytogenetics, and STR analysis. The novel cell line can be a valuable model for studying primary liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Cariotipagem , Neoplasias Hepáticas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA