Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39172179

RESUMO

PURPOSE: Pulmonary fibrosis is an irreversible scar-forming condition for which there is a lack of non-invasive and specific methods for monitoring its progression and therapy efficacy. However, the disease is known to be accompanied by collagen accumulation. Here, we developed a novel positron emission tomography (PET) probe targeting type I collagen to evaluate its utility for the non-invasive assessment of pulmonary fibrosis. METHODS: We designed a 18F-labeled PET probe ([18F]AlF-CBP) to target type I collagen and evaluated its binding affinity, specificity and stability in vitro. PET with [18F]AlF-CBP, CT, histopathology, immunofluorescence, and biochemical indice were performed to assess and quantify type I collagen levels and pulmonary fibrosis progression and treatment in murine models. Dynamic PET/CT studies of [18F]AlF-CBP were conducted to assess lung fibrosis in non-human primate models. RESULTS: [18F]AlF-CBP was successfully prepared, and in vitro and in vivo tests showed high stability (> 95%) and type I collagen specificity (IC50 = 0.36 µM). The lungs of the fibrotic murine model showed more elevated probe uptake and retention compared to the control group, and there was a positive correlation between the radioactivity uptake signals and the degree of fibrosis (CT: R2 = 0.89, P < 0.0001; hydroxyproline levels: R2 = 0.89, P < 0.0001). PET signals also correlated well with mean lung density in non-human primate models of pulmonary fibrosis (R2 = 0.84, P < 0.0001). CONCLUSION: [18F]AlF-CBP PET imaging is a promising non-invasive method for specific monitoring of lung fibrosis progression and therapy efficacy.

2.
Mol Pharm ; 21(2): 883-894, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38155100

RESUMO

Recently, we developed a bivalent prostate-specific membrane antigen (PSMA) radioligand ([18F]AlF-Bi-PSMA), which showed higher tumor uptake and retention in PSMA-positive mouse models than the clinically used radioligands, [68Ga]Ga-PSMA-11 and [18F]PSMA-1007. Here, we developed two 177Lu-labeled bivalent PSMA ligands with (DOTA-Alb-Bi-PSMA) or without an albumin-binding motif (DOTA-Bi-PSMA) to enhance radiotherapeutic efficacy with minimal toxicity. The results demonstrated that both 177Lu-labeled bivalent radioligands showed good stability, high binding affinity, and PSMA-targeting specificity in vitro. Compared with [177Lu]Lu-PSMA-617, both [177Lu]Lu-Bi-PSMA and [177Lu]Lu-Alb-Bi-PSMA showed a higher area under the curve (AUC) of tumor accumulation and superior therapeutic efficacy. However, [177Lu]Lu-Alb-Bi-PSMA exhibited a dose-dependent increase in acute damage to kidneys. In terms of the radionuclide therapy efficacy and side effects, [177Lu]Lu-Bi-PSMA exhibited well-balanced action with high tumor-to-organs AUC ratios, resulting in remarkable therapeutic efficacy and negligible side effects. These promising results warrant further investigations to achieve the clinical translation of [177Lu]Lu-Bi-PSMA.


Assuntos
Próstata , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Próstata/metabolismo , Radioisótopos de Gálio/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Albuminas/metabolismo , Lutécio/uso terapêutico , Antígeno Prostático Específico/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Ligantes
3.
Bioorg Chem ; 146: 107275, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493637

RESUMO

Early diagnosis and precise surgical intervention are crucial for cancer patients. We aimed to develop a novel positron emission tomography (PET)/fluorescence dual-modality probe for preoperative diagnosis, intraoperative guidance, and postoperative monitoring of fibroblast activation protein (FAP)-positive tumors. FAPI-FAM was synthesized and labeled with gallium-68. [68Ga]Ga-FAPI-FAM showed favorable in vivo and in vitro characteristics, specific binding affinity, and excellent tumor accumulation in FAP-positive cells and mice xenografts. Excellent tumor-to-background contrast was found owing to high tumor uptake, prolonged retention, and rapid renal clearance of [68Ga]Ga-FAPI-FAM. Moreover, a specific fluorescence signal was detected in FAP-positive tumors during ex vivo fluorescence imaging, demonstrating the feasibility of whole-body tumor detection and intraoperative tumor delineation.


Assuntos
Neoplasias , Quinolinas , Humanos , Camundongos , Animais , Radioisótopos de Gálio , Fluorescência , Tomografia por Emissão de Pósitrons/métodos , Neoplasias/metabolismo , Fibroblastos/metabolismo
4.
Am J Respir Crit Care Med ; 207(2): 160-172, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35984444

RESUMO

Rationale: Sustained activation of lung fibroblasts and the resulting oversynthesis of the extracellular matrix are detrimental events for patients with interstitial lung diseases (ILDs). Lung biopsy is a primary evaluation technique for the fibrotic status of ILDs, and is also a major risk factor for triggering acute deterioration. Fibroblast activation protein (FAP) is a long-known surface biomarker of activated fibroblasts, but its expression pattern and diagnostic implications in ILDs are poorly defined. Objectives: The present study aims to comprehensively investigate whether the expression intensity of FAP could be used as a potential readout to estimate or measure the amounts of activated fibroblasts in ILD lungs quantitatively. Methods: FAP expression in human primary lung fibroblasts as well as in clinical lung specimens was first tested using multiple experimental methods, including real-time quantitative PCR (qPCR), Western blot, immunofluorescence staining, deep learning measurement of whole slide immunohistochemistry, as well as single-cell sequencing. In addition, FAP-targeted positron emission tomography/computed tomography imaging PET/CT was applied to various types of patients with ILD, and the correlation between the uptake of FAP tracer and pulmonary function parameters was analyzed. Measurements and Main Results: Here, it was revealed, for the first time, FAP expression was upregulated significantly in the early phase of lung fibroblast activation event in response to a low dose of profibrotic cytokine. Single-cell sequencing data further indicate that nearly all FAP-positive cells in ILD lungs were collagen-producing fibroblasts. Immunohistochemical analysis validated that FAP expression level was closely correlated with the abundance of fibroblastic foci on human lung biopsy sections from patients with ILDs. We found that the total standard uptake value (SUV) of FAP inhibitor (FAPI) PET (SUVtotal) was significantly related to lung function decline in patients with ILD. Conclusions: Our results strongly support that in vitro and in vivo detection of FAP can assess the profibrotic activity of ILDs, which may aid in early diagnosis and the selection of an appropriate therapeutic window.


Assuntos
Doenças Pulmonares Intersticiais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Doenças Pulmonares Intersticiais/patologia , Pulmão/patologia , Fibrose , Fibroblastos/metabolismo
5.
Bioconjug Chem ; 34(11): 2133-2143, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37874952

RESUMO

Molecular imaging and targeted radiotherapy with radiolabeled fibroblast activation protein inhibitor (FAPI) targeting peptide probes hold great potential for enhancing the clinical management of patients with FAP-expressing cancers. However, the high cost of PET probes has prompted us to search for new FAP-targeting single-photon imaging agents. In this study, HYNIC-Glc-FAPT is synthesized and radiolabeled with technetium-99m using tricine/EDDA or dimer tricine as coligands to produce [99mTc]Tc-tricine/EDDA-HYNIC-Glc-FAPT and [99mTc]Tc-tricine(2)-HYNIC-Glc-FAPT. Both [99mTc]Tc-tricine/EDDA-HYNIC-Glc-FAPT and [99mTc]Tc-tricine(2)-HYNIC-Glc-FAPT were effectively synthesized with an excellent radiochemistry yield (both >97%, n = 6) in a single-step technique, and their stability in PBS and human serum was satisfactory. Compared to [99mTc]Tc-tricine(2)-HYNIC-Glc-FAPT, [99mTc]Tc-tricine/EDDA-HYNIC-Glc-FAPT exhibited a more hydrophilic nature with a log P of -3.53 ± 0.12. In vitro cellular uptake and blocking assays, internalization, efflux experiments, and affinity experiments all suggested a mechanism with high FAP-specificity and affinity. SPECT imaging and biodistribution of [99mTc]Tc-tricine/EDDA-HYNIC-Glc-FAPT demonstrated sustained high tumor uptake in BALB/c nude mice bearing U87MG tumors for 6 h. It demonstrated a long-range retention characteristic and more rapid clearance ability from nontarget organs. Collectively, we successfully synthesized [99mTc]Tc-tricine/EDDA-HYNIC-Glc-FAPT and [99mTc]Tc-tricine(2)-HYNIC-Glc-FAPT, and the excellent targeting properties of [99mTc]Tc-tricine/EDDA-HYNIC-Glc-FAPT suggest a potential diagnostic value in future clinical studies for advanced-stage FAP-expressing malignancies, especially in prognostic evaluation of tumors for it low price and convenient source.


Assuntos
Compostos Radiofarmacêuticos , Tecnécio , Camundongos , Animais , Humanos , Camundongos Nus , Distribuição Tecidual , Linhagem Celular Tumoral , Compostos Radiofarmacêuticos/química , Compostos de Organotecnécio/química
6.
Eur J Nucl Med Mol Imaging ; 50(11): 3363-3374, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37266596

RESUMO

PURPOSE: Research on fibroblast activating protein (FAP)-targeting inhibitor (FAPI) has become an important focus for cancer imaging and radiotherapy. Quinoline-based tracers [68 Ga]FAPI-04 and [18F]FAPI-42 have been widely used for positron emission tomography (PET) imaging of most tumors. However, there exist some limitations of these tracers with high uptake in biliary duct system and unstable uptake in pancreas, unsuitable for abdominal tumors PET imaging. Here we developed a [18F]-labeled glycopeptide-containing FAPI tracer (named [18F]FAPT) for PET imaging of FAP in cancers. METHODS: [18F]FAPT was synthesized manually and automatically. The competitive binding to FAP, cellular internalization, and efflux characteristics were examined in vitro using A549-FAP cells. Dynamic MicroPET and biodistribution studies of [18F]FAPT were then conducted in A549-FAP and U87MG xenograft tumor mouse models compared with [18F]FAPI-42. Five healthy volunteers and three patients with cancer underwent [18F]FAPT PET/CT. RESULTS: Preclinical and clinical studies showed specific binding of [18F]FAPT to FAP and favorable pharmacokinetic properties with better hydrophilicity, lower uptake in biliary duct system, higher tumor uptake and longer tumor retention compared with [18F]FAPI-42. The biodistribution of [18F]FAPT in healthy volunteers and patients with cancer displayed low uptake in most normal tissues except for pancreas, thyroid and salivary gland, which could contribute to high tumor-to-background ratios in most cancers. CONCLUSION: [18F]FAPT is better PET tracer than [18F]FAPI-42 for imaging of biliary duct system cancer, potentially providing a tool to examine FAP expression in most cancers with high tumor-to-background ratios.


Assuntos
Neoplasias Abdominais , Quinolinas , Humanos , Animais , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Distribuição Tecidual , Tomografia por Emissão de Pósitrons , Fibroblastos , Modelos Animais de Doenças , Radioisótopos de Gálio
7.
Bioorg Chem ; 141: 106878, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37774434

RESUMO

Fibroblast activation protein (FAP) is a promising molecular target for imaging in various types of cancers. Several 18F-labeled FAP inhibitor (FAPI) tracers have been evaluated in clinical study. However, these tracers display high physiological uptake in gallbladder and bile duct system. To overcome the limitation, we herein designed a novel radiotracer named 18F-FAPTG. 18F-FAPTG was produced with a non-decay-corrected radiochemical yield of 24.0 ± 6.0% and 22.0 ± 7.0% for manual and automatic synthesis, respectively. 18F-FAPTG exhibited high hydrophilicity and stability in vitro. The studies of cellular uptake, internalization, efflux properties and competitive binding to FAP of 18F-FAPTG indicated that the tracer showed high specificity, rapid internalization and low cellular efflux in FAP-positive cells. Biodistribution studies and microPET in mice bearing FAP-positive xenografts demonstrated extremely low uptake in the majority of other organs and main excretion of 18F-FAPTG through the urinary system. Furthermore, compared to 18F-FAPI-42, 18F-FAPTG showed significantly lower uptake in gallbladder, higher tumor uptake and longer tumor retention. In the pilot clinical study, 18F-FAPTG PET/CT demonstrated favorable tumor-to-background ratios in most organs and clearly displayed the malignant lesions. Our findings indicated that 18F-FAPTG had an advantage over 18F-FAPI-42 in PET imaging for cancers located in gallbladder the bile duct system. Thus, 18F-FAPTG could be an alternative to the currently available FAPI tracers.


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Camundongos , Animais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Distribuição Tecidual , Tomografia por Emissão de Pósitrons , Neoplasias/metabolismo , Fibroblastos/metabolismo
8.
Radiology ; 303(1): 191-199, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34981976

RESUMO

Background Gallium 68 (68Ga)-labeled fibroblast-activation protein inhibitor (FAPI) has recently been introduced as a promising tumor imaging agent. Purpose To compare 68Ga-FAPI PET/CT with fluorine 18 (18F)-labeled fluorodeoxyglucose (FDG) PET/CT in evaluating lung cancer. Materials and Methods In this prospective study conducted from September 2020 to February 2021, images from participants with lung cancer who underwent both 68Ga-FAPI and 18F-FDG PET/CT examinations were analyzed. The tracer uptakes, quantified by maximum standardized uptake value (SUVmax) and target-to-background ratio (TBR), were compared for paired positive lesions between both modalities using the paired t test or Wilcoxon signed-rank test. Results Thirty-four participants (median age, 64 years [interquartile range: 46-80 years]; 20 men) were evaluated. From visual evaluation, 68Ga-FAPI PET/CT and 18F-FDG PET/CT showed similar performance in the delineation of primary tumors and detection of suspected metastases in the lungs, liver, and adrenal glands. The metabolic tumor volume in primary and recurrent lung tumors showed no difference between modalities (mean: 11.6 vs 10.8, respectively; P = .68). However, compared with 18F-FDG PET/CT, 68Ga-FAPI PET/CT depicted more suspected metastases in lymph nodes (356 vs 320), brain (23 vs 10), bone (109 vs 91), and pleura (66 vs 35). From semiquantitative evaluation, the SUVmax and TBR of primary or recurrent tumors, positive lymph nodes, bone lesions, and pleural lesions at 68Ga-FAPI PET/CT were all higher than those at 18F-FDG PET/CT (all P < .01). Although SUVmax of 68Ga-FAPI and 18F-FDG in brain metastases were not different (mean SUVmax: 9.0 vs 7.4, P = .32), TBR was higher with 68Ga-FAPI than with 18F-FDG (mean: 314.4 vs 1.0, P = .02). Conclusion Gallium 68-labeled fibroblast-activation protein inhibitor PET/CT may outperform fluorine 18-labeled fluorodeoxyglucose PET/CT in staging lung cancer, particularly in the detection of metastasis to the brain, lymph nodes, bone, and pleura. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Jacobson and Van den Abbeele in this issue.


Assuntos
Neoplasias Pulmonares , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Feminino , Flúor , Fluordesoxiglucose F18 , Radioisótopos de Gálio , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Estudos Prospectivos
9.
Eur J Nucl Med Mol Imaging ; 49(8): 2705-2715, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35290473

RESUMO

PURPOSE: Fibroblast activation protein (FAP) has become a promising cancer-related target for diagnosis and therapy. The aim of this study was to develop a bivalent FAP ligand for both diagnostic PET imaging and endoradiotherapy. METHODS: We synthesized a bivalent FAP ligand (ND-bisFAP) and labeled it with 18F or 177Lu. FAP-positive A549-FAP cells were used to study competitive binding to FAP, cellular internalization, and efflux properties in vitro. Micro-PET imaging with [18F]AlF-ND-bisFAPI was conducted in mice bearing A549-FAP or U87MG tumors. Biodistribution and therapeutic efficacy of [177Lu]Lu-ND-bisFAPI were conducted in mice bearing A549-FAP tumors. RESULTS: The FAP binding affinity of ND-bisFAPI is 0.25 ± 0.05 nM, eightfold higher in potency than the monomeric DOTA-FAPI-04 (IC50 = 2.0 ± 0.18 nM). In A549-FAP cells, ND-bisFAPI showed specific uptake, a high internalized fraction, and slow cellular efflux. Compared to the monomeric [18F]AlF-FAPI-42, micro-PET imaging with [18F]AlF-ND-bisFAPI showed higher specific tumor uptake and retention for at least 6 h. Biodistribution studies showed that [177Lu]Lu-ND-bisFAPI had higher tumor uptake than [177Lu]Lu-FAPI-04 at the 24, 72, 120, and 168 h time points (all P < 0.01). [177Lu]Lu-ND-bisFAPI delivered fourfold higher radiation than [177Lu]Lu-FAPI-04 to A549-FAP tumors. For the endoradiotherapy study, 37 MBq of [177Lu]Lu-ND-bisFAPI significantly reduced tumor growth compared to the same dose of [177Lu]Lu-FAPI-04. Half of the dose of [177Lu]Lu-ND-bisFAPI (18.5 MBq) has comparable median survival as 37 MBq of [177Lu]Lu-FAPI-04 (37 vs 36 days). CONCLUSION: The novel bivalent FAP ligand was developed as a theranostic radiopharmaceutical and showed promising properties including higher tumor uptake and retention compared to the established radioligands [18F]AlF-FAPI-42 and [177Lu]Lu-FAPI-04. Preliminary experiments with 18F- or 177Lu-labeled ND-bisFAPI showed promising imaging properties and favorable anti-tumor responses.


Assuntos
Fibroblastos , Proteínas de Membrana , Animais , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Humanos , Ligantes , Proteínas de Membrana/metabolismo , Camundongos , Distribuição Tecidual
10.
Eur J Nucl Med Mol Imaging ; 49(8): 2833-2843, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34893920

RESUMO

PURPOSE: [18F]FAPI-42 is a new fibroblast activation protein (FAP)-specific tracer used for cancer imaging. Here, we describe the optimal acquisition time and in vivo evaluation of [18F]FAPI-42 and compared intra-individual biodistribution, tumor uptake, and detection ability to [68Ga]Ga-FAPI-04. METHODS: A total of 22 patients with various types of cancer received [18F]FAPI-42 whole-body positron emission tomography/computed tomography (PET/CT). Among them, 4 patients underwent PET/CT scans, including an early dynamic 20-min, static 1-h, and static 2-h scans. The in vivo biodistribution in normal organs and tumor uptake were semiquantitatively evaluated using the standardized uptake value (SUV) and tumor-to-background ratio (TBR). Furthermore, both [18F]FAPI-42 and [68Ga]Ga-FAPI-04 PET/CT were performed in 12 patients to compare biodistribution, tumor uptake, and tumor detection ability. RESULTS: [18F]FAPI-42 uptake in the tumors was rapid and reached a high level with an average SUVmax of 15.8 at 18 min, which stayed at a similarly high level to 2 h. The optimal image acquisition time for [18F]FAPI-42 was determined to be 1 h postinjection. For tumor detection, [18F]FAPI-42 had a high uptake and could be clearly visualized in the lesions. Compared to [68Ga]Ga-FAPI-04, [18F]FAPI-42 had the same detectability for 144 positive lesions. In addition, [18F]FAPI-42 showed a higher SUVmax in liver and bone lesions (P < 0.05) and higher TBRs in liver, bone, lymph node, pleura, and peritoneal lesions (all P < 0.05). CONCLUSION: The present study demonstrates that the optimal image acquisition time of [18F]FAPI-42 is 1 h postinjection and that [18F]FAPI-42 exhibits comparable lesion detectability to [68Ga]Ga-FAPI-04. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR2100045757).


Assuntos
Radioisótopos de Gálio , Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons , Quinolinas , Compostos Radiofarmacêuticos , Distribuição Tecidual
11.
Bioorg Chem ; 122: 105682, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278777

RESUMO

PD-L1 is widely expressed in a variety of tumors, including NSCLC, melanoma, renal cell carcinoma, gastric cancer, hepatocellular as well as cutaneous and various leukemias, multiple myeloma and so on. Herein, we designed a novel peptide imaging agent (Al[18F]-NOTA-IPB-PDL1P) that specifically targets PD-L1 expressed in tumors. The overall radiochemical yield of Al[18F]-NOTA-IPB-PDL1P from 18F- was 10-15% (corrected radiochemical yield) within 20 min and the radiochemical purity of Al[18F]-NOTA-IPB-PDL1P was > 95% with a molar activity of 44.4-64.8 GBq/µmol. The lipophilicity logP value of Al[18F]-NOTA-IPB-PDL1P at pH 7.4 was -1.768 ±â€¯0.007 (n = 3). In the cellular uptake experiment, both HCT116 and PC3 cells dispalyed high uptake to Al[18F]-NOTA-IPB-PDL1P. The results of biodistribution showed that the uptake of Al[18F]-NOTA-IPB-PDL1P was high in kidneys, gall bladder and lung, and low in muscle and brain. In vivo micro PET studies, both HCT116 and PC3 tumors displayed high uptake for Al[18F]-NOTA-IPB-PDL1P, the tumor/muscle (T/M) radio was 2.93 and 3.57 respectively at 120 min. All the results indicate that Al[18F]-NOTA-IPB-PDL1P may have potential to be a PET imaging agent of tumors with high PD-L1 expression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Radioisótopos de Flúor/química , Compostos Heterocíclicos com 1 Anel , Humanos , Sondas Moleculares , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual
12.
Amino Acids ; 53(6): 929-938, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34014365

RESUMO

Facile automatic production is important for the application of prostate-specific membrane antigen (PSMA) tracers in clinical practice. We developed a new 18F-AlF-labelled PSMA probe-18F-AlF-PSMA-NF-and explore its automated production method and potential value in clinical settings. 18F-AlF-PSMA-NF was prepared using an automated method with dimethylformamide (DMF) as the solvent in a positron emission tomography (PET)-MF-2 V-IT-I synthesizer. Tracer characteristics were examined both in vitro and in vivo. Micro-PET/computed tomography (CT) was performed to investigate the utility of 18F-AlF-PSMA-NF for imaging PSMA-positive tumours in vivo. 18F-AlF-PSMA-NF was prepared automatically within 35 min with a non-attenuation correction yield of 37.9 ± 11.2%. The tracer was hydrophilic, had a high affinity for PSMA (Kd = 2.58 ± 0.81 nM), and showed stability in both in vitro and in vivo conditions. In the cellular experiments, 18F-AlF-PSMA-NF uptake in PSMA-positive LNCaP cells was significantly higher than that in PSMA-negative PC-3 cells (P < 0.001), and could be blocked by excess ZJ-43-a PSMA inhibitor (P < 0.001). LNCaP tumours were clearly visualized by 18F-AlF-PSMA-NF on micro-PET/CT, with a high level of uptake (13.72 ± 2.01 percent injected dose per gram of tissue [%ID/g]) and high tumour/muscle ratio (close to 50:1). The PSMA-positive LNCaP tumours had a significantly higher uptake than PSMA-negative PC-3 tumours (13.72 ± 2.01%ID/g vs. 1.07 ± 0.48%ID/g, t = 10.382, P < 0.001), and could be blocked by ZJ-43 (13.72 ± 2.01%ID/g vs. 2.77 ± 1.44%ID/g, t = 8.14, P < 0.001). A new 18F-AlF-labelled PSMA probe-18F-AlF-PSMA-NF-was successfully developed and can be prepared automatically. It has the biological characteristics resembling that of a PSMA-based probe and can potentially be used in clinical settings.


Assuntos
Antígenos de Superfície , Radioisótopos de Flúor , Glutamato Carboxipeptidase II , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos , Animais , Antígenos de Superfície/química , Antígenos de Superfície/farmacologia , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacologia , Glutamato Carboxipeptidase II/síntese química , Glutamato Carboxipeptidase II/química , Glutamato Carboxipeptidase II/farmacocinética , Glutamato Carboxipeptidase II/farmacologia , Humanos , Marcação por Isótopo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células PC-3 , Neoplasias da Próstata/metabolismo , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/farmacologia , Distribuição Tecidual
13.
Mol Pharm ; 18(3): 1277-1284, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33492962

RESUMO

Glycogen synthase kinase-3ß (GSK-3ß), a cytoplasmic serine/threonine protein kinase, is involved in several human pathologies including Alzheimer's disease, bipolar disorder, diabetes, and cancer. Positron emission tomography (PET) imaging of GSK-3ß could aid in investigating GSK-3ß levels under normal and pathological conditions. In this study, we designed and synthesized fluorinated PET radioligands starting with recently identified isonicotinamide derivatives that showed potent affinity to GSK-3ß. After extensive in vitro inhibitory activity assays and analyzing U87 cell uptake, we identified [18F]10a-d as potential tracers with good specificity and high affinity. They were then subjected to further in vivo evaluation in rodent brain comprising PET imaging and metabolism studies. The radioligands [18F]10b-d penetrated the blood-brain barrier and accumulated in GSK-3ß-rich regions, including amygdala, cerebellum, and hippocampus. Also, it could be specifically blocked using the corresponding standard compounds. With these results, this work sets the basis for further development of novel 18F-labeled GSK-3ß PET probes.


Assuntos
Radioisótopos de Flúor/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Niacinamida/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Animais , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Linhagem Celular Tumoral , Diabetes Mellitus/diagnóstico por imagem , Diabetes Mellitus/metabolismo , Humanos , Ligantes , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Ratos
14.
Bioorg Med Chem Lett ; 30(12): 127187, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32307237

RESUMO

The asialoglycoprotein receptor (ASGPR) is abundantly expressed on the surface of hepatocytes where it recognizes and endocytoses glycoproteins with galactosyl and N-acetylgalactosamine groups. Given its hepatic distribution, the asialoglycoprotein receptor can be targeted by positron imaging agents to study liver function using PET imaging. In this study, the positron imaging agent [18F]FPGal was designed to specifically target hepatic asialoglycoprotein receptor and its effectiveness was assessed in in vitro and in vivo models. The radiosynthesis of [18F]FPGal required 50 min with total radiochemical yields of [18F]FPGal from [18F]fluoride as 10% (corrected radiochemical yield). The Kd of [18F]FPGal to ASGPR in HepG2 cells was 1.99 ± 0.05 mM. Uptake values of 0.55% were observed within 30 min of incubation with HepG2 cells, which could be blocked by 200 mM d(+)-galactose (<0.1%). In vivo biodistribution analysis showed that the liver accumulation of [18F]FPGal at 30 min was 4.47 ± 0.96% ID/g in normal mice compared to 1.33 ± 0.07% ID/g in hepatic fibrotic mice (P < 0.01). Reduced uptake in the hepatic fibrosis mouse models was confirmed through PET/CT images at 30 min. Compared to normal mice, the standard uptake value (SUV) in the hepatic fibrosis mice was significantly lower when assessed through dynamic data collection for 1 h. Therefore, [18F]FPGal is a feasible PET probe that provide insight into ASGPR related liver disease.


Assuntos
Receptor de Asialoglicoproteína/análise , Radioisótopos de Flúor/química , Galactose/química , Cirrose Hepática/diagnóstico por imagem , Fígado/metabolismo , Compostos Radiofarmacêuticos/química , Animais , Receptor de Asialoglicoproteína/metabolismo , Química Click , Modelos Animais de Doenças , Galactose/metabolismo , Células Hep G2 , Humanos , Marcação por Isótopo , Cinética , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/metabolismo , Distribuição Tecidual
15.
Bioorg Med Chem Lett ; 30(12): 127200, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32354567

RESUMO

In the 21st century, the incidence and mortality of cancer, one of the most challenging diseases in the world, have rapidly increased. The purpose of this study was to develop 2-(2-[18F]fluoroethoxy)ethyl 4-methylbenzenesulfonate ([18F]FEM) as a positron emission tomography (PET) agent for tumor imaging. In this study, [18F]FEM was synthesized with a good radiochemical yield (45.4 ± 5.8%), high specific radioactivity (over 25 GBq/µmol), and commendable radiochemical purity (over 99%). The octanol/water partition coefficient of [18F]FEM was 1.44 ± 0.04. The probe demonstrated good stability in vitro (phosphate-buffered saline (PBS) and mouse serum (MS)), and binding specificity to five different tumor cell lines (A549, PC-3, HCC827, U87, and MDA-MB-231). PET imaging of tumor-bearing mice showed that [18F]FEM specifically accumulated at the tumor site of the five different tumor cell lines. The average tumor-to-muscle (T/M) ratio was over 2, and the maximum T/M values reached about 3.5. The biodistribution and dynamic PET imaging showed that most probes were metabolized by the liver, whereas a small part was metabolized by the kidney. Moreover, dynamic brain images and quantitative data showed [18F]FEM can quickly cross the blood brain barrier (BBB) and quickly fade out, thereby suggesting it may be a promising candidate probe for the imaging of brain tumors. The presented results demonstrated that [18F]FEM is a promising probe for tumor PET imaging.


Assuntos
Imagem Óptica , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Animais , Linhagem Celular Tumoral , Radioisótopos de Flúor , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/diagnóstico por imagem , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
16.
Bioorg Med Chem Lett ; 28(6): 1143-1148, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29486966

RESUMO

Epidermal growth factor receptor (EGFR) has gained significant attention as a therapeutic target. Several EGFR targeting drugs (Gefitinib and Erlotinib) have been approved by US Food and Drug Administration (FDA) and have received high approval in clinical treatment. Nevertheless, the curative effect of these medicines varied in many solid tumors because of the different levels of expression and mutations of EGFR. Therefore, several PET radiotracers have been developed for the selective treatment of responsive patients who undergo PET/CT imaging for tyrosine kinase inhibitor (TKI) therapy. In this study, a novel fluorine-18 labeled 4-anilinoquinazoline based PET tracer, 1N-(3-(1-(2-18F-fluoroethyl)-1H-1,2,3-triazol-4-yl)phenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine (18F-FEA-Erlotinib), was synthesized and biological evaluation was performed in vitro and in vivo. 18F-FEA-Erlotinib was achieved within 50min with over 88% radiochemical yield (decay corrected RCY), an average specific activity over 50GBq/µmol, and over 99% radiochemical purity. In vitro stability study showed no decomposition of 18F-FEA-Erlotinib after incubated in PBS and FBS for 2h. Cellular uptake and efflux experiment results indicated the specific binding of 18F-FEA-Erlotinib to HCC827 cell line with EGFR exon 19 deletions. In vivo, Biodistribution studies revealed that 18F-FEA-Erlotinib exhibited rapid blood clearance both through hepatobiliary and renal excretion. The tumor uptake of 18F-FEA-Erlotinib in HepG2, HCC827, and A431 tumor xenografts, with different EGFR expression and mutations, was visualized in PET images. Our results demonstrate the feasibility of using 18F-FEA-Erlotinib as a PET tracer for screening EGFR TKIs sensitive patients.


Assuntos
Compostos de Anilina/farmacologia , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/farmacologia , Tomografia por Emissão de Pósitrons , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Compostos de Anilina/síntese química , Compostos de Anilina/química , Relação Dose-Resposta a Droga , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/síntese química , Cloridrato de Erlotinib/química , Radioisótopos de Flúor , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade
17.
Apoptosis ; 22(4): 585-595, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28084570

RESUMO

The exposition of phosphatidylserine (PS) from the cell membrane is associated with most cell death programs (apoptosis, necrosis, autophagy, mitotic catastrophe, etc.), which makes PS an attractive target for overall cell death imaging. To this end, zinc(II) macrocycle coordination complexes with cyclic polyamine units as low-molecular-weight annexin mimics have a selective affinity for biomembrane surfaces enriched with PS, and are therefore useful for detection of cell death. In the present study, a 11C-labeled zinc(II)-bis(cyclen) complex (11C-CyclenZn2) was prepared and evaluated as a new positron emission tomography (PET) probe for cell death imaging. 11C-CyclenZn2 was synthesized by methylation of its precursor, 4-methoxy-2,5-di-[10-methyl-1,4,7,10-tetraazacyclododecane-1,4,7-tricarboxylic acid tri-tert-butyl ester] phenol (Boc-Cyclen2) with 11C-methyl triflate as a prosthetic group in acetone, deprotection by hydrolysis in aqueous HCl solution, and chelation with zinc nitrate. The cell death imaging capability of 11C-CyclenZn2 was evaluated using in vitro cell uptake assays with camptothecin-treated PC-3 cells, biodistribution studies, and in vivo PET imaging in Kunming mice bearing S-180 fibrosarcoma. Starting from 11C-methyl triflate, the total preparation time for 11C-CyclenZn2 was ~40 min, with an uncorrected radiochemical yield of 12 ± 3% (based on 11C-CH3OTf, n = 10), a radiochemical purity of greater than 95%, and the specific activity of 0.75-1.01 GBq/µmol. The cell death binding specificity of 11C-CyclenZn2 was demonstrated by significantly different uptake rates in camptothecin-treated and control PC-3 cells in vitro. Inhibition experiments for 18F-radiofluorinated Annexin V binding to apoptotic/necrotic cells illustrated the necessity of zinc ions for zinc(II)-bis(cyclen) complexation in binding cell death, and zinc(II)-bis(cyclen) complexe and Annexin V had not identical binding pattern with apoptosis/necrosis cells. Biodistribution studies of 11C-CyclenZn2 revealed a fast clearance from blood, low uptake rates in brain and muscle tissue, and high uptake rates in liver and kidney, which provide the main metabolic route. PET imaging using 11C-CyclenZn2 revealed that cyclophosphamide-treated mice (CP-treated group) exhibited a significant increase of uptake rate in the tumor at 60 min postinjection, compared with control mice (Control group). The results indicate that the ability of 11C-CyclenZn2 to detect cell death is comparable to Annexin V, and it has potential as a PET tracer for noninvasive evaluation and monitoring of anti-tumor chemotherapy.


Assuntos
Morte Celular , Fibrossarcoma/diagnóstico por imagem , Lipídeos de Membrana/análise , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacocinética , Fosfatidilserinas/análise , Tomografia por Emissão de Pósitrons/métodos , Zinco/farmacocinética , Adenocarcinoma/patologia , Animais , Anexina A5/análise , Anexina A5/metabolismo , Antineoplásicos Alquilantes/uso terapêutico , Radioisótopos de Carbono/análise , Linhagem Celular Tumoral , Ciclofosfamida/uso terapêutico , Feminino , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/patologia , Citometria de Fluxo , Radioisótopos de Flúor/análise , Humanos , Masculino , Camundongos , Estrutura Molecular , Peso Molecular , Compostos Organometálicos/análise , Neoplasias da Próstata/patologia
18.
BMC Med Imaging ; 17(1): 27, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28431519

RESUMO

BACKGROUND: Phosphatidylserine (PS)-targeting positron emission tomography (PET) imaging with labeled small-molecule tracer is a crucial non-invasive molecule imaging method of apoptosis. In this study, semi-automatic radiosynthesis and biodistribution of N-(2-18F-fluoropropionyl)-bis(zinc(II)-dipicolylamine) (18F-FP-DPAZn2), as a potential small-molecule tracer for PET imaging of cell death in Alzheimer's disease (AD) model, were performed. METHODS: 18F-FP-DPAZn2 was synthesized on the modified PET-MF-2V-IT-I synthesizer. Biodistribution was determined in normal mice and PET images of AD model were obtained on a micro PET-CT scanner. RESULTS: With the modified synthesizer, the total decay-corrected radiochemical yield of 18F-FP-DPAZn2 was 35 ± 6% (n = 5) from 18F- within 105 ± 10 min. Biodistribution results showed that kidney has the highest uptake of 18F-FP-DPAZn2. The uptake of radioactivity in brain kept at a relatively low level during the whole observed time. In vivo 18F-FP-DPAZn2 PET images demonstrated more accumulation of radioactivity in the brain of AD model mice than that in the brain of normal mice. CONCLUSIONS: The semi-automatic synthetic method provides a slightly higher radiochemical yield and shorter whole synthesis time of 18F-FP-DPAZn2 than the manual operation method. This improved method can give enough radioactivity and high radiochemical purity of 18F-FP-DPAZn2 for in vivo PET imaging. The results show that 18F-FP-DPAZn2 seems to be a potential cell death tracer for AD imaging.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Radioisótopos de Flúor/farmacocinética , Marcação por Isótopo/métodos , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacocinética , Ácidos Picolínicos/síntese química , Ácidos Picolínicos/farmacocinética , Animais , Encéfalo/diagnóstico por imagem , Composição de Medicamentos/métodos , Radioisótopos de Flúor/química , Taxa de Depuração Metabólica , Camundongos , Imagem Molecular/métodos , Especificidade de Órgãos , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Robótica/métodos , Distribuição Tecidual
20.
BMC Med Imaging ; 16: 2, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26754531

RESUMO

BACKGROUND: The aim of this study was to compare the properties and feasibility of the glucose analog, 2-(18)F-fluoro-2-deoxy-D-glucose ((18)F-FDG), three short (18)F-labeled carboxylic acids, (18)F-fluoroacetate ((18)F-FAC), 2-(18)F-fluoropropionic acid ((18)F-FPA) and 4-((18)F)fluorobenzoic acid ((18)F-FBA), for differentiating tumors from inflammation. METHODS: Biodistributions of (18)F-FAC, (18)F-FPA and (18)F-FBA were determined on normal Kunming mice, and positron emission tomography (PET) imaging with these tracers were performed on the separate tumor-bearing mice model and inflammation mice model in comparison with (18)F-FDG. RESULTS: Biodistribution results showed that (18)F-FAC and (18)F-FPA had similar biodistribution profiles and the slow radioactivity clearance from most tissues excluding the in vivo defluorination of (18)F-FAC, and (18)F-FBA demonstrated a lower uptake and fast clearance in most tissues. PET imaging with (18)F-FDG, (18)F-FAC and (18)F-FPA revealed the high uptake in both tumor and inflammatory lesions. The ratios of tumor-to-inflammation were 1.63 ± 0.28 for (18)F-FDG, 1.20 ± 0.38 for (18)F-FAC, and 1.41 ± 0.33 for (18)F-FPA at 60 min postinjection, respectively. While clear tumor images with high contrast between tumor and inflammation lesion were observed in (18)F-FBA/PET with the highest ratio of tumor-to-inflammation (1.98 ± 0.15). CONCLUSIONS: Our data demonstrated (18)F-FBA is a promising PET probe to distinguish tumor from inflammation. But the further modification of (18)F-FBA structure is required to improve its pharmacokinetics.


Assuntos
Ácidos Carboxílicos/farmacocinética , Fluordesoxiglucose F18/farmacocinética , Inflamação/diagnóstico , Neoplasias/diagnóstico , Compostos Radiofarmacêuticos/farmacocinética , Animais , Benzoatos/farmacocinética , Diagnóstico Diferencial , Modelos Animais de Doenças , Fluoracetatos/farmacocinética , Fluorocarbonos/farmacocinética , Humanos , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA