Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cancer Cell Int ; 24(1): 238, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973004

RESUMO

Ubiquitination was considered to be a crucial factor in intrahepatic cholangiocarcinoma (iCCA) development. Herein, we identified Ubiquitin-specific peptidase 8 (USP8) as a key regulator for promoting the tumorigenesis of iCCA cell via stabilizing OGT. USP8 was overexpressed in human tumor tissues and correlated with worse survival. Moreover, the mass spectrometry and co-immunoprecipitation analysis indicated that USP8 interacted with OGT. USP8 worked as a bona fide deubiquitylase of OGT. It stabilized OGT in a deubiquitylation activity-dependent manner. Meanwhile, DUB-IN3, the USP8 inhibitor, could also restrain the malignancy of intrahepatic cholangiocarcinoma. In addition, USP8 depletion promoted the response of iCCA to pemigatinib. In conclusion, our findings pointed to a previously undocumented catalytic role for USP8 as a deubiquitinating enzyme of OGT. The USP8-OGT axis could be a potential target for iCCA therapy.

2.
Int J Surg Case Rep ; 120: 109821, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870656

RESUMO

INTRODUCTION: Intrahepatic cholelithiasis is a common disease for which laparoscopic liver resection is one of the treatment options. Here is a case of a patient who developed atypical complications after liver resection. CASE PRESENTATION: A 59-year-old patient with intrahepatic cholelithiasis underwent laparoscopic left hemihepatectomy in our hospital. However, the patient developed recurrent fever and jaundice after surgery. And with multiple treatments, the symptoms improved and the diagnosis was finally confirmed. DISCUSSION: This case has some educational value as it shows that post-operative hepatic stones can lead to biliary hemorrhage due to infection and that imaging and signs can be deceptive to some extent. CONCLUSION: In patients with intrahepatic cholelithiasis who present with symptoms of fever and jaundice after hepatectomy, hemobilia cannot be completely ruled out, even if the fecal occult blood test is negative.

3.
Clin Pharmacokinet ; 63(8): 1147-1165, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102093

RESUMO

BACKGROUND: In clinical practice, the vast array of potential drug combinations necessitates swift and accurate assessments of pharmacokinetic drug-drug interactions (DDIs), along with recommendations for adjustments. Current methodologies for clinical DDI evaluations primarily rely on basic extrapolations from clinical trial data. However, these methods are limited in accuracy owing to their lack of a comprehensive consideration of various critical factors, including the inhibitory potency, dosage, and type of the inhibitor, as well as the metabolic fraction and intestinal availability of the substrate. OBJECTIVE: This study aims to propose an efficient and accurate clinical pharmacokinetic-mediated DDI assessment tool, which comprehensively considers the effects of inhibitory potency and dosage of inhibitors, intestinal availability and fraction metabolized of substrates on DDI outcomes. METHODS: This study focuses on DDIs caused by cytochrome P450 3A4 enzyme inhibition, utilizing extensive clinical trial data to establish a methodology to calculate the metabolic fraction and intestinal availability for substrates, as well as the concentration and inhibitory potency for inhibitors ( K i or k inact / K I ). These parameters were then used to predict the outcomes of DDIs involving 33 substrates and 20 inhibitors. We also defined the risk index for substrates and the potency index for inhibitors to establish a clinical DDI risk scale. The training set for parameter calculation consisted of 73 clinical trials. The validation set comprised 89 clinical DDI trials involving 53 drugs. which was used to evaluate the reliability of in vivo values of K i and k inact / K I , the accuracy of DDI predictions, and the false-negative rate of risk scale. RESULTS: First, the reliability of the in vivo K i and k inact / K I values calculated in this study was assessed using a basic static model. Compared with values obtained from other methods, this study values showed a lower geometric mean fold error and root mean square error. Additionally, incorporating these values into the physiologically based pharmacokinetic-DDI model facilitated a good fitting of the C-t curves when the substrate's metabolic enzymes are inhibited. Second, area under the curve ratio predictions of studied drugs were within a 1.5 × margin of error in 81% of cases compared with clinical observations in the validation set. Last, the clinical DDI risk scale developed in this study predicted the actual risks in the validation set with only a 5.6% incidence of serious false negatives. CONCLUSIONS: This study offers a rapid and accurate approach for assessing the risk of pharmacokinetic-mediated DDIs in clinical practice, providing a foundation for rational combination drug use and dosage adjustments.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Interações Medicamentosas , Humanos , Medição de Risco/métodos , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Ensaios Clínicos como Assunto/métodos , Modelos Biológicos , Preparações Farmacêuticas/metabolismo
4.
Pharmaceutics ; 16(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38543239

RESUMO

Fibroblast activation protein (FAP) is a serine protease characterized by its high expression in cancer-associated fibroblasts (CAFs) and near absence in adult normal tissues and benign lesions. This unique expression pattern positions FAP as a prospective biomarker for targeted tumor radiodiagnosis and therapy. The advent of FAP-based radiotheranostics is anticipated to revolutionize cancer management. Among various types of FAP ligands, peptides and antibodies have shown advantages over small molecules, exemplifying prolonged tumor retention in human volunteers. Within its scope, this review summarizes the recent research progress of the FAP radiopharmaceuticals based on antibodies and peptides in tumor imaging and therapy. Additionally, it incorporates insights from recent studies, providing valuable perspectives on the clinical utility of FAP-targeted radiopharmaceuticals.

5.
Exploration (Beijing) ; 4(3): 20230090, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38939861

RESUMO

Atherosclerosis, a chronic disease associated with metabolism, poses a significant risk to human well-being. Currently, existing treatments for atherosclerosis lack sufficient efficiency, while the utilization of surface-modified nanoparticles holds the potential to deliver highly effective therapeutic outcomes. These nanoparticles can target and bind to specific receptors that are abnormally over-expressed in atherosclerotic conditions. This paper reviews recent research (2018-present) advances in various ligand-modified nanoparticle systems targeting atherosclerosis by specifically targeting signature molecules in the hope of precise treatment at the molecular level and concludes with a discussion of the challenges and prospects in this field. The intention of this review is to inspire novel concepts for the design and advancement of targeted nanomedicines tailored specifically for the treatment of atherosclerosis.

6.
Anal Chim Acta ; 1287: 342068, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182375

RESUMO

Wearable biosensors have gained huge interest due to their potential for real-time physiological information. The development of a non-invasive blood glucose device is of great interests for health monitoring in reducing the diabetes incidence. Here, we report a sandwich-structured biosensor that is designed for glucose levels detection by using sweat as the means of monitoring. The Prussian blue nanoparticles (PBNPs) and carboxylated carbon nanotubes (MWCNT-COOH) were self-assembled on the electrode to improve the electrochemical performance and as the sensor unit, glucose oxidase (GOx) was immobilized by chitosan (CS) as the reaction catalysis unit, and finally encapsulated with Nafion to ensure a stable performance. As a result, the GOx/PBNPs/MWCNT-COOH sensor displays a low detection limit (7.0 µM), high sensitivity (11.87 µA mM-1 cm-2), and excellent interference resistance for a full sweat glucose application range (0.0-1.0 mM) for both healthy individuals and diabetic patients. Additionally, the glucose sensor exhibits stable stability for two weeks and can be successfully applied to screen-printed carbon electrodes (SPCE), demonstrating its great potential for personalized medical detection and chronic disease management.


Assuntos
Glicemia , Nanotubos de Carbono , Humanos , Automonitorização da Glicemia , Glucose Oxidase , Glucose
7.
J Control Release ; 372: 403-416, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38914207

RESUMO

The immunosuppressive microenvironment of malignant tumors severely hampers the effectiveness of anti-tumor therapy. Moreover, abnormal tumor vasculature interacts with immune cells, forming a vicious cycle that further interferes with anti-tumor immunity and promotes tumor progression. Our pre-basic found excellent anti-tumor effects of c-di-AMP and RRx-001, respectively, and we further explored whether they could be combined synergistically for anti-tumor immunotherapy. We chose to load these two drugs on PVA-TSPBA hydrogel scaffolds that expressly release drugs within the tumor microenvironment by in situ injection. Studies have shown that c-di-AMP activates the STING pathway, enhances immune cell infiltration, and reverses tumor immunosuppression. Meanwhile, RRx-001 releases nitric oxide, which increases oxidative stress injury in tumor cells and promotes apoptosis. Moreover, the combination of the two presented more powerful pro-vascular normalization and reversed tumor immunosuppression than the drug alone. This study demonstrates a new design option for anti-tumor combination therapy and the potential of tumor environmentally responsive hydrogel scaffolds in combination with anti-tumor immunotherapy.


Assuntos
Hidrogéis , Proteínas de Membrana , Microambiente Tumoral , Animais , Hidrogéis/administração & dosagem , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Imunoterapia/métodos , Camundongos , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia , Óxido Nítrico , Humanos , Feminino , Apoptose/efeitos dos fármacos
8.
J Med Chem ; 67(4): 2559-2569, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305157

RESUMO

Parkinson's disease (PD) is one of the most highly debilitating neurodegenerative disorders, which affects millions of people worldwide, and leucine-rich repeat kinase 2 (LRRK2) mutations have been involved in the pathogenesis of PD. Developing a potent LRRK2 positron emission tomography (PET) tracer would allow for in vivo visualization of LRRK2 distribution and expression in PD patients. In this work, we present the facile synthesis of two potent and selective LRRK2 radioligands [11C]3 ([11C]PF-06447475) and [18F]4 ([18F]PF-06455943). Both radioligands exhibited favorable brain uptake and specific bindings in rodent autoradiography and PET imaging studies. More importantly, [18F]4 demonstrated significantly higher brain uptake in the transgenic LRRK2-G2019S mutant and lipopolysaccharide (LPS)-injected mouse models. This work may serve as a roadmap for the future design of potent LRRK2 PET tracers.


Assuntos
Morfolinas , Nitrilas , Doença de Parkinson , Pirimidinas , Camundongos , Animais , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Leucina , Tomografia por Emissão de Pósitrons/métodos , Doença de Parkinson/metabolismo , Mutação
9.
Nat Nanotechnol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898135

RESUMO

The buildup of plaques in atherosclerosis leads to cardiovascular events, with chronic unresolved inflammation and overproduction of reactive oxygen species (ROS) being major drivers of plaque progression. Nanotherapeutics that can resolve inflammation and scavenge ROS have the potential to treat atherosclerosis. Here we demonstrate the potential of black phosphorus nanosheets (BPNSs) as a therapeutic agent for the treatment of atherosclerosis. BPNSs can effectively scavenge a broad spectrum of ROS and suppress atherosclerosis-associated pro-inflammatory cytokine production in lesional macrophages. We also demonstrate ROS-responsive, targeted-peptide-modified BPNS-based carriers for the delivery of resolvin D1 (an inflammation-resolving lipid mediator) to lesional macrophages, which further boosts the anti-atherosclerotic efficacy. The targeted nanotherapeutics not only reduce plaque areas but also substantially improve plaque stability in high-fat-diet-fed apolipoprotein E-deficient mice. This study presents a therapeutic strategy against atherosclerosis, and highlights the potential of BPNS-based therapeutics to treat other inflammatory diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA