Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(7): 170, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913206

RESUMO

The timely degradation of tapetum, the innermost somatic anther cell layer in flowering plants, is critical for pollen development. Although several genes involved in tapetum development have been characterized, the molecular mechanisms underlying tapetum degeneration remain elusive. Here, we showed that mutation in Abnormal Degraded Tapetum 1 (ADT1) resulted in overaccumulation of Reactive Oxygen Species (ROS) and abnormal anther development, causing earlier tapetum Programmed Cell Death (PCD) and pollen abortion. ADT1 encodes a nuclear membrane localized protein, which is strongly expressed in the developing microspores and tapetal cells during early anther development. Moreover, ADT1 could interact with metallothionein MT2b, which was related to ROS scavenging and cell death regulation. These findings indicate that ADT1 is required for proper timing of tapetum PCD by regulating ROS homeostasis, expanding our understanding of the regulatory network of male reproductive development in rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Mutação , Oryza , Proteínas de Plantas , Pólen , Espécies Reativas de Oxigênio , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Morte Celular , Flores/crescimento & desenvolvimento , Flores/genética , Apoptose
2.
Phytopathology ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809607

RESUMO

Fusarium head blight (FHB) of wheat, mainly caused by Fusarium graminearum, leads to severe economic losses worldwide. Effective management measures for controlling FHB are not available, due to a lack of resistant cultivars. Currently, the utilization of biological control is a promising approach that can be used to help manage FHB. Previous studies have confirmed that Streptomyces pratensis S10 harbors excellent inhibitory effects on F. graminearum. However, there is no information regarding invasive hyphae of F. graminearum are inhibited by S10. Thus, we investigated the effects of S10 on F. graminearum strain PH-1 hyphae extension, toxisome formation, and TRI5 gene expression on wheat plants via microscopic observation. The results showed that S10 effectively inhibited spread of F. graminearum hyphae along the rachis, restricting the infection of neighboring florets via the phloem. In the presence of S10, the hyphal growth is impeded by formation of dense cell wall thickenings in the rachis internode surrounding the F. graminearum infection site, avoiding cell plasmolysis and collapse. We further demonstrated that S10 largely prevented cell-to-cell invasion of fungal hyphae inside wheat coleoptiles using a constitutively green fluorescence protein-expressing F. graminearum strain, PH-1. Importantly, S. pratensis S10 inhibited toxisome formation and TRI5 gene expression in wheat plants during infection. Collectively, these findings indicated that S. pratensis S10 prevents spread of F. graminearum invasive hyphae via the rachis.

3.
Skin Res Technol ; 30(4): e13696, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602262

RESUMO

BACKGROUND: Female pattern hair loss (FPHL) is the most prevalent type of alopecia among adult women. Presently, topical minoxidil stands as the sole treatment endorsed by the FDA. Addressing cases of FPHL in individuals who develop contact dermatitis in response to minoxidil can pose a challenge for dermatologists. OBJECTIVE: To assess the efficacy and safety of subcutaneous injections of Botulinum Toxin Type A (BTA) in treating FPHL. METHODS: Enrolled outpatients with FPHL who exhibited an allergic reaction to minoxidil solution. Diagnosis of FPHL was established through clinical examination and trichoscopy. Inclusion criteria involved patients with no prior treatment within the last year and without any comorbidities. BTA, specifically 100 units, was mixed with 2 mL of 0.9% normal saline. Twenty injection target sites, spaced 2-3 cm apart, were symmetrically marked on the hairless area of the scalp. A dosage of five units was intradermally injected at each target site. Representative photographs and dermoscopic images of the scalp were captured before and after 3 months of treatment. RESULTS: A total of 10 FPHL, aged between 26 and 40 years, were included. The average age was 30.3 ± 4.64 years, and all patients had a positive family history of Androgenetic Alopecia. The average duration of the disease was 3.70 ± 1.42 years. According to patients' self-assessment, after 1 month of treatment, 10 FPHL patients reported experiencing moderate to marked improvement in symptoms related to scalp oil secretion. Three months later, dermatological assessments showed that three had mild improvement, six had no change, and one had a worsening condition. No adverse effects were observed. CONCLUSIONS: Our study suggests that the effectiveness of BTA for FPHL is limited to 3 months. However, it can be considered for tentative use after effective communication with patients. The long-term efficacy and safety of BTA in treating FPHL require further observation and study.


Assuntos
Toxinas Botulínicas Tipo A , Minoxidil , Adulto , Feminino , Humanos , Minoxidil/uso terapêutico , Toxinas Botulínicas Tipo A/efeitos adversos , Alopecia/tratamento farmacológico , Couro Cabeludo
4.
BMC Pulm Med ; 24(1): 173, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609925

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) induced by smoking poses a significant global health challenge. Recent findings highlight the crucial role of extracellular vesicles (EVs) in mediating miRNA regulatory networks across various diseases. This study utilizes the GEO database to uncover distinct expression patterns of miRNAs and mRNAs, offering a comprehensive understanding of the pathogenesis of smoking-induced COPD. This study aims to investigate the mechanisms by which extracellular vesicles (EVs) mediate the molecular network of miR-422a-SPP1 to delay the onset of COPD caused by smoking. METHODS: The smoking-related miRNA chip GSE38974-GPL7723 was obtained from the GEO database, and candidate miRs were retrieved from the Vesiclepedia database. Downstream target genes of the candidate miRs were predicted using mRNA chip GSE38974-GPL4133, TargetScan, miRWalk, and RNA22 databases. This prediction was integrated with COPD-related genes from the GeneCards database, downstream target genes predicted by online databases, and key genes identified in the core module of WGCNA analysis to obtain candidate genes. The candidate genes were subjected to KEGG functional enrichment analysis using the "clusterProfiler" package in R language, and a protein interaction network was constructed. In vitro experiments involved overexpressing miRNA or extracting extracellular vesicles from bronchial epithelial cell-derived exosomes, co-culturing them with myofibroblasts to observe changes in the expression levels of the miR-422a-SPP1-IL-17 A regulatory network, and assessing protein levels of fibroblast differentiation-related factors α-SMA and collagen I using Western blot analysis. RESULTS: The differential gene analysis of chip GSE38974-GPL7723 and the retrieval results from the Vesiclepedia database identified candidate miRs, specifically miR-422a. Subsequently, an intersection was taken among the prediction results from TargetScan, miRWalk, and RNA22 databases, the COPD-related gene retrieval results from GeneCards database, the WGCNA analysis results of chip GSE38974-GPL4133, and the differential gene analysis results. This intersection, combined with KEGG functional enrichment analysis, and protein-protein interaction analysis, led to the final screening of the target gene SPP1 and its upstream regulatory gene miR-422a. KEGG functional enrichment analysis of mRNAs correlated with SPP1 revealed the IL-17 signaling pathway involved. In vitro experiments demonstrated that miR-422a inhibition targets suppressed the expression of SPP1 in myofibroblasts, inhibiting differentiation phenotype. Bronchial epithelial cells, under cigarette smoke extract (CSE) stress, could compensate for myofibroblast differentiation phenotype by altering the content of miR-422a in their Extracellular Vesicles (EVs). CONCLUSION: The differential gene analysis of Chip GSE38974-GPL7723 and the retrieval results from the Vesiclepedia database identified candidate miRs, specifically miR-422a. Further analysis involved the intersection of predictions from TargetScan, miRWalk, and RNA22 databases, gene search on COPD-related genes from the GeneCards database, WGCNA analysis from Chip GSE38974-GPL4133, and differential gene analysis, combined with KEGG functional enrichment analysis and protein interaction analysis. Ultimately, the target gene SPP1 and its upstream regulatory gene miR-422a were selected. KEGG functional enrichment analysis on mRNAs correlated with SPP1 revealed the involvement of the IL-17 signaling pathway. In vitro experiments showed that miR-422a targeted inhibition suppressed the expression of SPP1 in myofibroblast cells, inhibiting differentiation phenotype. Furthermore, bronchial epithelial cells could compensate for myofibroblast differentiation phenotype under cigarette smoke extract (CSE) stress by altering the miR-422a content in their extracellular vesicles (EVs).


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Vesículas Extracelulares/genética , Interleucina-17/genética , MicroRNAs/genética , Osteopontina , Transdução de Sinais , Fumar/efeitos adversos
5.
J Environ Manage ; 351: 119784, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081091

RESUMO

During the long-term stabilization process of landfills, the pressure field undergoes constant changes. This study constructed dynamic pressure changes scenarios of high-pressure differentials (0.6 MPa) and low-pressure differentials (0.2 MPa) in the landfill pressure field at 25 °C and 50 °C, and investigated the sulfate reduction behavior in response to landfill dynamic pressure changes. The results showed that the pressurization or depressurization of high-pressure differentials caused more significant differences in sulfate reduction behavior than that of low-pressure differentials. The lowest hydrogen sulfide (H2S) release peak concentration under pressurization was only 29.67% of that under initial pressure condition; under depressurization, the highest peak concentration of H2S was up to 21,828 mg m-3, posing a serious risk of H2S pollution. Microbial community and correlation analysis showed that pressure had a negative impact on the sulfate-reducing bacteria (SRB) community, and the SRB community adjusted its structure to adapt to pressure changes. Specific SRBs were further enriched with pressure changes. Differential H2S release behavior under pressure changes in the 25 °C pressure environments were mediated by Desulfofarcimen (ASV343) and Desulfosporosinus (ASV1336), while Candidatus Desulforudis (ASV24) and Desulfohalotomaculum (ASV94) played a key role at 50 °C. This study is helpful in the formulation of control strategies for the source of odor pollution in landfills.


Assuntos
Desulfovibrio , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/química , Instalações de Eliminação de Resíduos , Sulfatos/química
6.
Acta Pharmacol Sin ; 44(1): 32-43, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35896696

RESUMO

Inflammation is one of the pathogenic processes in Parkinson's disease (PD). Dopamine receptor agonist pramipexole (PPX) is extensively used for PD treatment in clinics. A number of studies show that PPX exerts neuroprotection on dopaminergic (DA) neurons, but the molecular mechanisms underlying the protective effects of PPX on DA neurons are not fully elucidated. In the present study, we investigated whether PPX modulated PD-related neuroinflammation and underlying mechanisms. PD model was established in mice by bilateral striatum injection of lipopolyssaccharide (LPS). The mice were administered PPX (0.5 mg·kg-1·d-1, i.p.) 3 days before LPS injection, and for 3 or 21 days after surgery, respectively, for biochemical and histological analyses. We showed that PPX administration significantly alleviated the loss of DA neurons, and suppressed the astrocyte activation and levels of proinflammatory cytokine IL-1ß in the substantia nigra of LPS-injected mice. Furthermore, PPX administration significantly decreased the expression of NLRP3 inflammasome-associated proteins, i.e., cleaved forms of caspase-1, IL-1ß, and apoptosis-associated speck-like protein containing a caspase recruit domain (ASC) in the striatum. These results were validated in LPS+ATP-stimulated primary mouse astrocytes in vitro. Remarkably, we showed that PPX (100-400 µM) dose-dependently enhanced the autophagy activity in the astrocytes evidenced by the elevations in LC3-II and BECN1 protein expression, as well as the increase of GFP-LC3 puncta formation. The opposite effects of PPX on astrocytic NLRP3 inflammasome and autophagy were eliminated by Drd3 depletion. Moreover, we demonstrated that both pretreatment of astrocytes with autophagy inhibitor chloroquine (40 µM) in vitro and astrocyte-specific Atg5 knockdown in vivo blocked PPX-caused inhibition on NLRP3 inflammasome and protection against DA neuron damage. Altogether, this study demonstrates an anti-neuroinflammatory activity of PPX via a Drd3-dependent enhancement of autophagy activity in astrocytes, and reveals a new mechanism for the beneficial effect of PPX in PD therapy.


Assuntos
Doença de Parkinson , Camundongos , Animais , Pramipexol/uso terapêutico , Pramipexol/metabolismo , Pramipexol/farmacologia , Doença de Parkinson/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Astrócitos/metabolismo , Lipopolissacarídeos/farmacologia , Autofagia , Camundongos Endogâmicos C57BL
7.
Plant Dis ; 107(5): 1442-1451, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36269586

RESUMO

Fusarium head blight (FHB) of wheat, predominately caused by Fusarium graminearum, is an economically important plant disease worldwide. With increased fungicide resistance, controlling this filamentous fungal disease has become an enormous challenge. Biocontrol agents alone or integrated with other methods could better manage FHB. Streptomyces pratensis S10 has strong antagonistic activity against FHB as reported in our previous study. We now have investigated S10 controls of FHB in more detail by combining microscope observations, biological assays, and transcriptome profiling. S10 culture filtrates (SCF) significantly inhibited essential stages of the life cycle of F. graminearum in the laboratory and under simulated natural conditions. SCF at different concentrations inhibited conidiation of F. graminearum with an inhibition of 57.49 to 83.83% in the medium and 64.04 to 85.89% in plants. Different concentrations of SCF reduced conidia germination by 47.33 to 67.67%. Two percent (vol/vol) SCF suppressed perithecia formation of F. graminearum by 84 and 81% in the laboratory and under simulated natural conditions, respectively. The S10 also reduced the pathogenicity and penetration ability of F. graminearum by suppressing ATP production. Collectively, these findings indicate that S. pratensis S10 should be explored further for efficacy at controlling FHB.


Assuntos
Fungicidas Industriais , Fusarium , Animais , Fusarium/fisiologia , Fungicidas Industriais/farmacologia , Estágios do Ciclo de Vida , Trifosfato de Adenosina
8.
J Environ Manage ; 344: 118733, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37562250

RESUMO

Protection and rectification patters of urban wetlands have been considered in strategies to balance services to society and negative consequences of excess reactive nitrogen (Nr) loading. However, the knowledge about strategies of semi-constructed wetlands on nitrogen (N) cycling pathways and removal Nr from the overlying water is limited. This study aimed to reveal considerable differences among rectification patterns of the typical semi-constructed wetland (Xixi wetland), comprising rational exploitation area (REA), rehabilitation and reconstruction area (RRA), and conservation area (CA) by analyzing the N distribution and N protentional pathways among them. Results pointed out that both NH4+ and NO3- concentration were prominently higher in REA, as opposed to CA and RRA. Sediments in RRA had relatively higher NH4+ content, indicating the efficiency of dissimilatory nitrate reduction (DNRA) in RRA. Moreover, there was a significant shift in the microbial community structure across different sites and sediments. Metagenomic analysis distinguished the N cycling pathways, with nitrification (M00804), denitrification (M00529), and DNRA (M00530) being the crucial pathways in the semi-constructed wetland. The relative abundance of N metabolic pathways (ko00910) varied among different types of sediments, being more abundant in shore and rhizosphere areas and less abundant in bottom sediments. Methylobacter and Nitrospira were the predominant nitrifiers in shore sediments, while Methylocystis was enriched in the bottom sediments and rhizosphere soils. Furthermore, Anaeromyxobacter, Anaerolinea, Dechloromonas, Nocardioides, and Methylocystis were identified as the primary denitrifiers with N reductase genes (nirK, nirS, or nosZ). Among these, Anaeromyxobacter, Dechloromonas, and Methylocystis were the primary contributors containing the nosZ gene in semi-constructed wetlands, driving the conversion of N2O to N2. This study provides important insights into rectification-dependent Nr removal from the overlying water in terms of N distribution and N metabolic functional microbial communities in the semi-constructed wetlands.


Assuntos
Desnitrificação , Áreas Alagadas , Nitrogênio , Nitrificação , Nitratos
9.
J Environ Sci (China) ; 126: 545-555, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503780

RESUMO

Attention should be paid to the sulfate reduction behavior in a pressure-bearing leachate saturated zone. In this study, within the relative pressure range of 0-0.6 MPa, the ambient temperature with the highest sulfate reduction rate of 50°C was selected to explore the difference in sulfate reduction behavior in a pressure-bearing leachate saturated zone. The results showed that the sulfate reduction rate might further increase with an increase in pressure; however, owing to the effect of pressure increase, the generated hydrogen sulfide (H2S) could not be released on time, thereby decreasing its highest concentration by approximately 85%, and the duration extended to about two times that of the atmospheric pressure. Microbial community structure and functional gene abundance analyses showed that the community distribution of sulfate-reducing bacteria was significantly affected by pressure conditions, and there was a negative correlation between disulfide reductase B (dsrB) gene abundance and H2S release rate. Other sulfate reduction processes that do not require disulfide reductase A (dsrA) and dsrB genes may be the key pathways affecting the sulfate reduction rate in the pressure-bearing leachate saturated zone. This study improves the understanding of sulfate reduction in landfills as well as provides a theoretical basis for the operation and management of landfills.


Assuntos
Pressão Atmosférica , Dissulfetos , Fenômenos Químicos , Fenômenos Físicos , Sulfatos
10.
Langmuir ; 38(4): 1497-1508, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34918521

RESUMO

Adsorption and separation of light mercaptan (R-SH, R = C1-C4) from methane gas can effectively improve the utilization efficiency of methane and the resource conversion of organic sulfide. To further investigate the effects of composition and structural characteristics of laminates on desulfurization performance, in this paper, a two-dimensional (2D) HTiNbO5-nanosheet (HTiNbO5-NS) was constructed. In addition, the hydrogen-bonding interaction between the exposed hydroxyl active sites on the surface of HTiNbO5-NS and ethyl mercaptan (Et-SH) was constructed to realize the adsorption and separation of Et-SH from methane gas. The breakthrough adsorption capacity (Cap (BT)) of HTiNbO5-NS is 14.35 mg·g-1 in a micro fixed bed with a space velocity of 6000 h-1. The regeneration desulfurization rate (q) of the 10-cycle regeneration adsorption was ca. 96%. Furthermore, density functional theory (DFT) calculation results show that the S atoms of Et-SH and HTiNbO5-NS with the terminal hydroxyl and bridge hydroxyl have electron cloud covering to form the hydrogen-bonding interaction. In addition, the formation details of this hydrogen-bond interaction are discussed. The effects of Ti on the microstructure, hydroxyl acid, hydroxyl content, surface area, and pore volume of nanosheets were studied to explain the reasons for the differences in the properties of the two kinds of nanosheets. This work broadens the design of 2D niobium-based efficient adsorbents for R-SH based on hydrogen-bonding interaction and is helpful to enrich the application of the hydrogen-bonding interaction.

11.
Biochem Genet ; 60(6): 2268-2285, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35325440

RESUMO

To further understand the molecular mechanism for rice male reproduction, a rice male sterile mutant paa1 was screened from the rice mutant library generated by treatment with 60Coγ-rays. Genetic analysis revealed that paa1 is controlled by a single- recessive nuclear gene, and the anthers of the paa1 mutant were smaller than those of WT plants with a white color. Histological analysis demonstrated that the anthers of the paa1 mutant began to turn abnormal at the microspore stage after meiosis, with abnormal degradation of tapetum, deformed Ubisch bodies, and defective pollen exine. TUNEL assay results also confirmed the delay of tapetum PCD in paa1. Map-based cloning was performed for the PAA1 location. As a result, PAA1 was located in a 88-kb region at the end of chromosome 10, which comprises a total of seven candidate genes, and no genes related to anther development have been reported in this region. The results indicate that PAA1 is an essential gene in regulating tapetum development and pollen/microspore formation after rice meiosis.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/metabolismo , Meiose/genética , Flores/genética
12.
Ecotoxicol Environ Saf ; 242: 113919, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35901592

RESUMO

The vertical distribution of sulfonamides (SAs), tetracyclines (TCs), macrolides (MLs), and their related antibiotic resistance genes (ARGs) were comprehensively investigated and characterized in a representative municipal solid waste (MSW) landfill in China. The total concentrations of target antibiotics in the MSW landfill were SAs > TCs > MLs. The abundances of mexF (10.78 ± 0.65 log10copies/g) and sul genes (9.15 ± 0.54 log10copies/g) were relatively high, while the tet genes (7.19 ± 0.77 log10copies/g) were the lowest. Both the abundance of antibiotics and genes fluctuated with landfill depth, and the ARGs of the same antibiotics were consistent with depth change. Intl1 and sul genes (sul1, sul2) were tightly connected, and a close relationship also existed between tet genes (tetM, tetQ) and MLs resistance genes (ermB, mefA). High-throughput sequencing showed the dominant genera were Sporosarcina (38%) and Thiobacillus (17%) at sampling points A and C, while the microbial community varied with depth increase at point B were Brevundimonas (20%), Sporosarcina (20%), Pseudomonas (24%), Lysobacter (28%), and Thioalkalimicrobium (14%), respectively. Network analysis further visualized the relationship among antibiotics, genes, and microbial communities and the results indicated the non-random connection among them and the possible host of the target gene. Even at 12.0 m below the landfill surface, the pollution of antibiotics resistance was still serious, which posed difficulties for subsequent landfill remediation and pollution control.


Assuntos
Antibacterianos , Resíduos Sólidos , Antibacterianos/análise , Antibacterianos/farmacologia , China , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Macrolídeos , Resíduos Sólidos/análise , Tetraciclinas/análise , Instalações de Eliminação de Resíduos
13.
J Cell Mol Med ; 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133068

RESUMO

Ageing-related osteoporosis is becoming an emerging threat to human health along with the ageing of human population. The decreased rate of osteogenic differentiation and bone formation is the major cause of ageing-related osteoporosis. Microtubule actin cross-linking factor 1 (MACF1) is an important cytoskeletal factor that promotes osteogenic differentiation and bone formation. However, the relationship between MACF1 expression and ageing-related osteoporosis remains unclear. This study has investigated the expression pattern of MACF1 in bone tissues of ageing-related osteoporosis patients and ageing mice. The study has further elucidated the mechanism of MACF1 promoting bone formation by inhibiting HES1 expression and activity. Moreover, the therapeutic effect of MACF1 on ageing-related osteoporosis and post-menopausal osteoporosis was evaluated through in situ injection of the MACF1 overexpression plasmid. The study supplemented the molecular mechanisms between ageing and bone formation, and provided novel targets and potential therapeutic strategy for ageing-related osteoporosis.

14.
Environ Microbiol ; 23(4): 1925-1940, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33073508

RESUMO

Wheat scab, mainly caused by Fusarium graminearum, can decrease wheat yield and grain quality. Chemical pesticides are currently the main control method but have an inevitable negative consequence on the environment and in food safety. This research studies a promising substitute, Streptomyces pratensis S10, which was isolated from tomato leaf mould and shows a significant inhibition effect on F. graminearum based on antagonism assays. The biocontrol mechanism is studied by enhanced green fluorescent protein labelling, quantitative real-time PCR, the Doskochilova 8 solvents system test and complete genome sequencing. Strain S10 can colonize in the wheat root, control wheat scab and decrease deoxynivalenol (DON) content. The control effects in vitro, planta and the plot experiments were 92.86%, 68.67% and 40.87% to 86.62%, respectively. S10 decreased DON content by inhibiting the mycelium growth and DON synthesis gene expression. The active substances of the S10 secondary metabolites had a high-temperature resistance and 29 putative biosynthetic gene clusters in its genome. The S10 control mechanism is multivariate, which shows potential in controlling wheat scab.


Assuntos
Fusarium , Tricotecenos , Fusarium/genética , Doenças das Plantas , Streptomyces
15.
FASEB J ; 34(5): 6570-6581, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32246801

RESUMO

Dysfunction of the circadian rhythm is one of most common nonmotor symptoms in Parkinson's disease (PD), but the molecular role of the circadian rhythm in PD is unclear. We here showed that inactivation of brain and muscle ARNT-like 1 (BMAL1) in 1-methyl-4-phenyl-1,2,4,5-tetrahydropyridine (MPTP)-treated mice resulted in obvious motor functional deficit, loss of dopaminergic neurons (DANs) in the substantia nigra pars compacta (SNpc), decrease of dopamine (DA) transmitter, and increased activation of microglia and astrocytes in the striatum. Time on the rotarod or calorie consumption, and food and water intake were reduced in the Bmal1-/- mice after MPTP treatment, suggesting that absence of Bmal1 may exacerbate circadian and PD motor function. We observed a significant reduction of DANs (~35%) in the SNpc, the tyrosine hydroxylase protein level in the striatum (~60%), the DA (~22%), and 3,4-dihydroxyphenylacetic acid content (~29%), respectively, in MPTP-treated Bmal1-/- mice. Loss of Bmal1 aggravated the inflammatory reaction both in vivo and in vitro. These findings suggest that BMAL1 may play an essential role in the survival of DANs and maintain normal function of the DA signaling pathway via regulating microglia-mediated neuroinflammation in the brain.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Fatores de Transcrição ARNTL/fisiologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/imunologia , Inflamação/patologia , Microglia/patologia , Doença de Parkinson/patologia , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurotoxinas/toxicidade , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo
16.
Nanotechnology ; 32(50)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34571500

RESUMO

Silver nanowires (AgNWs) have been considered as one of the most promising flexible transparent electrodes (FTEs) material for next-generation optoelectronic devices. However, the large contact resistance between AgNWs could deteriorate the conductivity of FTEs. In the present work, high-performance AgNWs FTEs were obtained by means of focused-light-scanning (FLS), which could lead to the large-area, rapid and high-quality welding between AgNWs within a short time, forming the reliable and stable AgNWs network. The results of the optoelectronic tests show that after FLS, the sheet resistance of the AgNWs FTEs sharply decreased from 5113 Ω/sq to 7.7 Ω/sq, with maintaining a high transmittance (∼94%). Finally, a high-performance flexible transparent heater was fabricated by using FLS, showing reach a relatively high temperature in a short response time and rapid response at low input voltage. The findings offer an effective pathway to greatly improve the conductivity of AgNWs FTEs.

17.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208464

RESUMO

Piezo channels are mechanosensitive ion channels located in the cell membrane and function as key cellular mechanotransducers for converting mechanical stimuli into electrochemical signals. Emerged as key molecular detectors of mechanical forces, Piezo channels' functions in bone have attracted more and more attention. Here, we summarize the current knowledge of Piezo channels and review the research advances of Piezo channels' function in bone by highlighting Piezo1's role in bone cells, including osteocyte, bone marrow mesenchymal stem cell (BM-MSC), osteoblast, osteoclast, and chondrocyte. Moreover, the role of Piezo channels in bone diseases is summarized.


Assuntos
Osso e Ossos/metabolismo , Canais Iônicos/fisiologia , Animais , Doenças Ósseas , Condrócitos/metabolismo , Suscetibilidade a Doenças , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/agonistas , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/química , Mecanotransdução Celular , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteócitos/metabolismo , Relação Estrutura-Atividade
18.
BMC Plant Biol ; 20(1): 556, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33302870

RESUMO

BACKGROUND: Nitrogen application can effectively mitigate the damage to crop growth and yield caused by drought. However, the efficiency of heavy nitrogen application before drought (NBD) and heavy nitrogen application after drought (NAD) to regulate rice response to drought stress remains controversial. In this study, we profiled physiology, proteomics and metabolomics in rice variety Wufengyou 286 of two nitrogen management modes (NBD and NAD) to investigate their yield formation and the mechanism of nitrogen regulation for drought resistance. RESULTS: Results revealed that the yield of NBD and NAD decreased significantly when it was subjected to drought stress at the stage of young panicle differentiation, while the yield of NBD was 33.85 and 36.33% higher than that of NAD in 2017 and 2018, reaching significant levels. Under drought conditions, NBD increased chlorophyll content and net photosynthetic rate in leaves, significantly improved the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase and catalase, and decreased malondialdehyde (MDA) content compared with NAD. NBD promoted nitrogen assimilation in leaves, which was characterized by increased activities of nitrate reductase (NR) and glutamine synthetase (GS). In addition, NBD significantly increased the contents of osmotic regulatory substances such as soluble sugar, soluble protein and free proline. Gene ontology and KEGG enrichment analysis of 234 differentially expressed proteins and 518 differential metabolites showed that different nitrogen management induced strong changes in photosynthesis pathway, energy metabolism pathway, nitrogen metabolism and oxidation-reduction pathways. CONCLUSION: Different nitrogen management methods have significant differences in drought resistance of rice. These results suggest that heavy nitrogen application before drought may be an important pathway to improve the yield and stress resistance of rice, and provide a new ecological perspective on nitrogen regulation in rice.


Assuntos
Secas , Grão Comestível/metabolismo , Metabolômica/métodos , Nitrogênio/metabolismo , Oryza/metabolismo , Proteômica/métodos , Antioxidantes/metabolismo , Biomassa , Catalase/metabolismo , Grão Comestível/crescimento & desenvolvimento , Malondialdeído/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Nitrogênio/farmacologia , Oryza/crescimento & desenvolvimento , Peroxidase/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Superóxido Dismutase/metabolismo
19.
J Org Chem ; 85(13): 8352-8359, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32496068

RESUMO

The hydrolysis of carbonyl sulfide (COS) to form H2S by carbonic anhydrase has been demonstrated to be a viable strategy to deliver H2S in a biological system. Herein, we describe N-dithiasuccinoyl amines as thiol-triggered COS/H2S donors. Notably, thiol species especially GSH and homocysteine can trigger the release of both COS and H2S directly from several specific analogues via an unexpected mechanism. Importantly, two representative analogues Dts-1 and Dts-5 show intracellular H2S release, and Dts-1 imparts potent anti-inflammatory effects in LPS-challenged microglia cells. In conclusion, N-dithiasuccinoyl amine could serve as promising COS/H2S donors for either H2S biological studies or H2S-based therapeutics development.


Assuntos
Sulfeto de Hidrogênio , Compostos de Sulfidrila , Aminas , Óxidos de Enxofre
20.
Nanotechnology ; 31(15): 155202, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31860903

RESUMO

A resistance random access memory device based on TiO2 thin films was fabricated using a sol-gel spin and coating techniques. The composition, surface morphology, and microstructure of the TiO2 films were characterized using x-ray diffraction, Raman spectroscopy, scanning electronic microscopy, and transmission electron microscopy, respectively. The fabricated Al/TiO2 film/fluorine-doped tin oxide device exhibited electroforming-free bipolar resistive switching characteristics with a stable ON/OFF ratio higher than 300. The performance of the endurance cycling was still good after 100 direct sweeping cycles. A retention time of no less than 104 s was confirmed. A switching mechanism is systematically discussed based on the test results, and space-charge-limited current was found to be responsible for the switching behavior. Multilevel memory performance was realized in the as-fabricated devices. The synaptic performance was investigated by applying consecutive positive (0-2 V) and negative (0 to -1.6 V) voltage sweeps. The fabricated devices were found to exhibit 'learning-experience' behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA