Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Breed ; 43(11): 76, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37873506

RESUMO

Bread wheat (Triticum aestivum L.) is a global staple crop vital for human nutrition. Heading date (HD) and flowering date (FD) are critical traits influencing wheat growth, development, and adaptability to diverse environmental conditions. A comprehensive study were conducted involving 190 bread wheat accessions to unravel the genetic basis of HD and FD using high-throughput genotyping and multi-environment field trials. Seven independent quantitative trait loci (QTLs) were identified to be significantly associated with HD and FD using two GWAS methods, which explained a proportion of phenotypic variance ranging from 1.43% to 9.58%. Notably, QTLs overlapping with known vernalization genes Vrn-D1 were found, validating their roles in regulating flowering time. Moreover, novel QTLs on chromosome 2A, 5B, 5D, and 7B associated with HD and FD were identified. The effects of these QTLs on HD and FD were confirmed in an additional set of 74 accessions across different environments. An increase in the frequency of alleles associated with early flowering in cultivars released in recent years was also observed, suggesting the influence of molecular breeding strategies. In summary, this study enhances the understanding of the genetic regulation of HD and FD in bread wheat, offering valuable insights into crop improvement for enhanced adaptability and productivity under changing climatic conditions. These identified QTLs and associated markers have the potential to improve wheat breeding programs in developing climate-resilient varieties to ensure food security. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01422-z.

2.
Funct Integr Genomics ; 22(2): 141-152, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34981261

RESUMO

Semi-dwarf and dwarf genes were widely used in wheat breeding for improving lodging resistant and increasing yield. Rht14 dwarf gene was identified and deployed in durum wheat, where it showed advantage on important agronomic potential. The reciprocal F2 populations derived of Castelporziano (CP) and Langdon (L) were used for mapping of Rht14, which was located in intervals 4.8 cM and 10.38 cM by KASP (Kompetitive Allele Specific PCR) markers, respectively, where corresponding to 312-454 Mbp on chromosome 6A, and finally, it was mapped to the genomic region of 402 ~ 408 Mbp in Durum Wheat Svevo RefSeq Rel. 1.0 (i.e., 405 ~ 411 Mbp in Chinese Spring RefSeq v.1.0) using recombinants by indel markers. The expression of TdGA2oxA9 was higher in dwarf line than tall lines and the bioactive GA1 was lower. No sequence difference was observed in the promoter and coding region of GA2oxA9 between the dwarf and tall parent, while obvious DNA methylation difference was found in its promoter. Two methylation-related genes with high confidence located in the candidate region and expressed differently between the tall and dwarf ones. This study proposed that Rht14 might regulate the expression of GA2oxA9 by DNA methylation in its promoter, which provided a way to clone Rht14 and to further investigate the mechanism behind.


Assuntos
Melhoramento Vegetal , Triticum , Genes de Plantas , Estudos de Associação Genética , Triticum/genética , Triticum/metabolismo
3.
Planta ; 255(6): 114, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35507093

RESUMO

MAIN CONCLUSION: Rht5 was narrowed to an approximately 1 Mb interval and had pleiotropic effects on plant height, spike length and grain size. TraesCS3B02G025600 was predicted as the possible candidate gene. Plant height is an important component related to plant architecture, lodging resistance, and yield performance. The utilization of dwarf genes has made great contributions to wheat breeding and production. In this study, two F2 populations derived from the crosses of Jinmai47 and Ningchun45 with Marfed M were employed to identify the genetic region of reduce plant height 5 (Rht5), and their derived lines were used to evaluate its effects on plant height and main agronomic traits. Rht5 was fine-mapped between markers Kasp-25 and Kasp-23, in approximately 1 Mb region on chromosome 3BS, which harbored 17 high-confidence annotated genes based on the reference genome of Chinese Spring (IWGSC RefSeq v1.1). TraesCS3B02G025600 were predicted as the possible candidate gene based on its differential expression and sequence variation between dwarf and tall lines and parents. The results of phenotypic evaluation showed that Rht5 had pleiotropic effects on plant height, spike length, culm diameter, grain size and grain yield. The plant height of Rht5 dwarf lines was reduced by an average of 32.67% (32.53 cm) and 27.84% (33.62 cm) in the Jinmai47 and Ningchun45 population, respectively. While Rht5 showed significant and negative pleiotropic effects on culm diameter, aboveground biomass, grain yield, spike length, spikelet number, grain number per spike, grain size, grain weight and filling degree of basal second internode. The culm lodging resistance index (CLRI) of dwarf lines was significantly higher than that of tall lines in the two population. In conclusion, these results lay a foundation for understanding the dwarfing mechanism of Rht5.


Assuntos
Pão , Triticum , Grão Comestível/genética , Genes de Plantas/genética , Fenótipo , Melhoramento Vegetal , Triticum/genética
4.
Physiol Plant ; 174(3): e13725, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35642076

RESUMO

Rht4 is characterized as a GA-responsive dwarf gene in bread wheat (Triticum aestivum L.). The responsiveness of Rht4 to exogenous GA3 was characterized in seedlings, but the effects of exogenous GA3 on the important morphological and agronomic traits such as plant height, grain-filling rate, and yield components are unclear. In this study, the Rht4 responsiveness of exogenous GA3 on these traits was evaluated using the homozygous F4:5 and F5:6 lines derived from a cross between Jinmai47 and Burt ert937 (Rht4 donor). After exogenous GA3 application, the plant height of the dwarf lines was, on average, increased by 17.54%, about 7.92% more than that of the tall lines. Compared with the tall lines, application of exogenous GA3 significantly increased the kernel weight, maximum grain-filling rate (Gmax), average grain-filling rate (Gave) and kernel weight increment achieving Gmax (Wmax) in both superior and inferior grains, while the day on which the maximum grain-filling rate was reached (Tmax) in Rht4 dwarf lines was significantly earlier in the two generations. What is more, the grain number spike-1 , grain yield plant-1 , and 1000-kernel weight (TKW) of the dwarf lines notably increased after exogenous GA3 -treatment, while there was no significant change in the tall lines except for TKW. The quality traits of the dwarf lines with GA3 -treatment were greatly improved. Taken together, these results suggested that the application of GA3 could improve the grain-filling process of Rht4 and compensate for some negative influences, which may provide a reference for its application in wheat breeding and promote the characterization of its regulatory mechanisms.


Assuntos
Pão , Triticum , Grão Comestível/genética , Fenótipo , Melhoramento Vegetal , Plântula/genética
5.
BMC Genomics ; 22(1): 519, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238217

RESUMO

BACKGROUND: Amino acid transporters (AATs) plays an essential roles in growth and development of plants, including amino acids long-range transport, seed germination, quality formation, responsiveness to pathogenic bacteria and abiotic stress by modulating the transmembrane transfer of amino acids. In this study, we performed a genome-wide screening to analyze the AAT genes in foxtail millet (Setaria italica L.), especially those associated with quality formation and abiotic stresses response. RESULTS: A total number of 94 AAT genes were identified and divided into 12 subfamilies by their sequence characteristics and phylogenetic relationship. A large number (58/94, 62%) of AAT genes in foxtail millet were expanded via gene duplication, involving 13 tandem and 12 segmental duplication events. Tandemly duplicated genes had a significant impact on their functional differentiation via sequence variation, structural variation and expression variation. Further comparison in multiple species showed that in addition to paralogous genes, the expression variations of the orthologous AAT genes also contributed to their functional differentiation. The transcriptomic comparison of two millet cultivars verified the direct contribution of the AAT genes such as SiAAP1, SiAAP8, and SiAUX2 in the formation of grain quality. In addition, the qRT-PCR analysis suggested that several AAT genes continuously responded to diverse abiotic stresses, such as SiATLb1, SiANT1. Finally, combined with the previous studies and analysis on sequence characteristics and expression patterns of AAT genes, the possible functions of the foxtail millet AAT genes were predicted. CONCLUSION: This study for the first time reported the evolutionary features, functional differentiation, roles in the quality formation and response to abiotic stresses of foxtail millet AAT gene family, thus providing a framework for further functional analysis of SiAAT genes, and also contributing to the applications of AAT genes in improving the quality and resistance to abiotic stresses of foxtail millet, and other cereal crops.


Assuntos
Setaria (Planta) , Sistemas de Transporte de Aminoácidos , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Estresse Fisiológico/genética
6.
BMC Plant Biol ; 21(1): 381, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412589

RESUMO

BACKGROUND: Phosphate (Pi) deficiency severely affects crop growth and productivity, including wheat, therefore it is necessary to develop cultivars with enhanced Pi-deficiency tolerance. However, the underlying mechanism of Pi-deficiency tolerance in wheat is still elusive. Two contrasting wheat cultivars, low-Pi tolerant Kenong199 (KN199) and low-Pi sensitive Chinese Spring (CS) were used to reveal adaptations in response to Pi deficiency at the morphological, physiological, metabolic, and molecular levels. RESULTS: KN199 was more tolerant to Pi deficiency than CS with significantly increased root biomass and R/S ratio. Root traits, the total root length, total root surface area, and total root volume, were remarkably enhanced by Pi deficiency in KN199. The shoot total P and soluble Pi concentrations of KN199 were significantly higher than those of CS, but not in roots. In KN199, high Pi level in shoots is a higher priority than that in roots under Pi deficiency. It was probably due to differentially regulation in the miR399-mediated signaling network between the shoots of the two cultivars. The Pi deficiency-induced root architecture adaptation in KN199 was attributed to the regulation of the hormone-mediated signaling (ethylene, gibberellin, and jasmonates). The expression of genes associated with root development and Pi uptake was enhanced in KN199. Some primary metabolites (amino acids and organic acids) were significantly accumulated in roots of KN199 under Pi deficiency. CONCLUSIONS: The low-Pi tolerant wheat cultivar KN199 possessed greater morphological and primary metabolic adaptations in roots than CS under Pi deficiency. The adaption and the underlying molecular mechanisms in wheat provide a better understanding of the Pi-deficiency tolerance and the strategies for improving Pi efficiency in wheat.


Assuntos
Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Fosfatos/deficiência , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Triticum/genética , Triticum/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Variação Genética , Genótipo , Melhoramento Vegetal , Plântula/metabolismo
7.
Theor Appl Genet ; 134(9): 3083-3109, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34142166

RESUMO

KEY MESSAGE: Based on the large-scale integration of meta-QTL and Genome-Wide  Association Study, 76 high-confidence MQTL regions and 237 candidate genes that affected wheat yield and yield-related traits were discovered. Improving yield and yield-related traits are key goals in wheat breeding program. The integration of accumulated wheat genetic resources provides an opportunity to uncover important genomic regions and candidate genes that affect wheat yield. Here, a comprehensive meta-QTL analysis was conducted on 2230 QTL of yield-related traits obtained from 119 QTL studies. These QTL were refined into 145 meta-QTL (MQTL), and 89 MQTL were verified by GWAS with different natural populations. The average confidence interval (CI) of these MQTL was 2.92 times less than that of the initial QTL. Furthermore, 76 core MQTL regions with a physical distance less than 25 Mb were detected. Based on the homology analysis and expression patterns, 237 candidate genes in the MQTL involved in photoperiod response, grain development, multiple plant growth regulator pathways, carbon and nitrogen metabolism and spike and flower organ development were determined. A novel candidate gene TaKAO-4A was confirmed to be significantly associated with grain size, and a CAPS marker was developed based on its dominant haplotype. In summary, this study clarified a method based on the integration of meta-QTL, GWAS and homology comparison to reveal the genomic regions and candidate genes that affect important yield-related traits in wheat. This work will help to lay a foundation for the identification, transfer and aggregation of these important QTL or candidate genes in wheat high-yield breeding.


Assuntos
Cromossomos de Plantas/genética , Grão Comestível/genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico/métodos , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento
8.
Physiol Mol Biol Plants ; 25(5): 1163-1174, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31564779

RESUMO

Carbon isotope discrimination (Δ) has been recognized as a valuable phenotyping tool in wheat breeding. However, technical expertise and analysis cost restrict its large-scale use. We examined the associations of ash content (AC), minerals content (Ca, K, Mg, Fe and Mn) and leaf chlorophyll content (Chl) with grain Δ and grain yield (GY) to assess their potential as substitute to grain Δ. We evaluated 49 wheat genotypes under two water deficit regimes (W120 and W200) in a rain-out shelter. Leaf chlorophyll content (Chl) was strongly correlated with grain Δ and GY under moderate water deficit regime (W200). Significant and negative correlations (P < 0.01) of AC and potassium concentration (K) with grain Δ, and between AC and GY was observed under both water regimes, while manganese concentration (Mn) was negatively correlated with grain Δ under W120 regime only and magnesium concentration (Mg) correlated negatively under the W200 regime only. Grain Δ was correlated (P < 0.01) positively with photosynthesis rate (A), stomatal conductance (gs) and GY, while correlated negatively (P < 0.01) with intrinsic water use efficiency (iWUE) under both water regimes. Results confirm the role of grain Δ as an indirect selection criterion for drought tolerance under a wide range of drought conditions. Additionally, Chl is the most suitable trait to predict yield under moderate water deficit conditions. AC and K concentration in grain proved potentially useful and economical alternative criterion to grain Δ in the evaluation of differences in yield potential and drought tolerance in wheat under drought.

10.
Proc Natl Acad Sci U S A ; 108(30): 12354-9, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21737747

RESUMO

Land plants have developed a cuticle preventing uncontrolled water loss. Here we report that an ATP-binding cassette (ABC) subfamily G (ABCG) full transporter is required for leaf water conservation in both wild barley and rice. A spontaneous mutation, eibi1.b, in wild barley has a low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. Map-based cloning revealed that Eibi1 encodes an HvABCG31 full transporter. The gene was highly expressed in the elongation zone of a growing leaf (the site of cutin synthesis), and its gene product also was localized in developing, but not in mature tissue. A de novo wild barley mutant named "eibi1.c," along with two transposon insertion lines of rice mutated in the ortholog of HvABCG31 also were unable to restrict water loss from detached leaves. HvABCG31 is hypothesized to function as a transporter involved in cutin formation. Homologs of HvABCG31 were found in green algae, moss, and lycopods, indicating that this full transporter is highly conserved in the evolution of land plants.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Hordeum/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Transportadores de Cassetes de Ligação de ATP/classificação , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Sequência de Bases , Secas , Evolução Molecular , Genes de Plantas , Hordeum/genética , Lipídeos de Membrana/genética , Lipídeos de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Oryza/genética , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Água/metabolismo
11.
Int J Mol Sci ; 15(9): 16196-210, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25222556

RESUMO

The vacuolar type H+-ATPase (V-type H+-ATPase) plays important roles in establishing an electrochemical H+-gradient across tonoplast, energizing Na+ sequestration into the central vacuole, and enhancing salt stress tolerance in plants. In this paper, a putative E subunit of the V-type H+-ATPase gene, W36 was isolated from stress-induced wheat de novo transcriptome sequencing combining with 5'-RACE and RT-PCR methods. The full-length of W36 gene was 1097 bp, which contained a 681 bp open reading frame (ORF) and encoded 227 amino acids. Southern blot analysis indicated that W36 was a single-copy gene. The quantitative real-time PCR (qRT-PCR) analysis revealed that the expression level of W36 could be upregulated by drought, cold, salt, and exogenous ABA treatment. A subcellular localization assay showed that the W36 protein accumulated in the cytoplasm. Isolation of the W36 promoter revealed some cis-acting elements responding to abiotic stresses. Transgenic Arabidopsis plants overexpressing W36 were enhanced salt and mannitol tolerance. These results indicate that W36 is involved in the plant response to osmotic stress.


Assuntos
Proteínas de Plantas/metabolismo , Triticum/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Aminobutiratos/farmacologia , Arabidopsis/enzimologia , Secas , Manitol/farmacologia , Dados de Sequência Molecular , Fases de Leitura Aberta , Pressão Osmótica , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Cloreto de Sódio/farmacologia , Regulação para Cima/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/genética
12.
J Integr Plant Biol ; 56(5): 425-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24618006

RESUMO

Food security is a global concern and substantial yield increases in crops are required to feed the growing world population. Mutagenesis is an important tool in crop improvement and is free of the regulatory restrictions imposed on genetically modified organisms. Targeting Induced Local Lesions in Genomes (TILLING), which combines traditional chemical mutagenesis with high-throughput genome-wide screening for point mutations in desired genes, offers a powerful way to create novel mutant alleles for both functional genomics and improvement of crops. TILLING is generally applicable to genomes whether small or large, diploid or even allohexaploid, and shows great potential to address the major challenge of linking sequence information to the function of genes and to modulate key traits for plant breeding. TILLING has been successfully applied in many crop species and recent progress in TILLING is summarized below, especially on the developments in mutation detection technology, application of TILLING in gene functional studies and crop breeding. The potential of TILLING/EcoTILLING for functional genetics and crop improvement is also discussed. Furthermore, a small-scale forward strategy including backcross and selfing was conducted to release the potential mutant phenotypes masked in M2 (or M3) plants.


Assuntos
Produtos Agrícolas/genética , Mutagênese/fisiologia , Produtos Agrícolas/fisiologia , Genômica/métodos , Mutagênese/genética , Mutação Puntual/genética
13.
Front Plant Sci ; 15: 1338425, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571717

RESUMO

The introduction of dwarfing genes triggered a wave of "green revolution". A number of wheats dwarfing genes have been reported in previous studies, and only a small fraction of these have been applied to production practices. Therefore, the development of novel dwarfing genes for wheat is of great value. In this study, a novel dwarfing site, Rht-yz, identified in the Yanzhan mutation, is located on chromosome 4B (30-33MB) and its mechanism of action is different from that of Rht-B1b (C-T mutation), but whether it affects the Rht-B1a (TraesCS4B02G043100) or other genes is unclear. Exogenously applied GA3 experiments showed that Rht-yz is one of the gibberellin-insensitive dwarf genes. The effects of the dwarf gene Rht-yz on agronomic traits in wheat were evaluated in the field using Yanzhan, Yanzhan mutations, F2:3 and F3:4 lines. The results showed that Rht-yz improved lodging resistance by reducing plant height, increasing diameter, wall thickness and mechanical strength of the basal stem. In terms of yield traits, Rht-yz had negative effects on tiller number plant-1, biomass plant-1 and yield plant-1, but had no significant effect on harvest index, 1000-kernel weight and spike traits. In addition, Rht-yz significantly increased crude protein, wet gluten and starch content. Therefore, the rational use of the new dwarfing site Rht-yz has potential and value in dwarf wheat breeding.

14.
Front Plant Sci ; 14: 1134170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993845

RESUMO

Compared to C3 species, C4 plants showed higher photosynthetic capacity as well as water and nitrogen use efficiency due to the presence of the C4 photosynthetic pathway. Previous studies have shown that all genes required for the C4 photosynthetic pathway exist in the genomes of C3 species and are expressed. In this study, the genes encoding six key C4 photosynthetic pathway enzymes (ß-CA, PEPC, ME, MDH, RbcS, and PPDK) in the genomes of five important gramineous crops (C4: maize, foxtail millet, and sorghum; C3: rice and wheat) were systematically identified and compared. Based on sequence characteristics and evolutionary relationships, their C4 functional gene copies were distinguished from non-photosynthetic functional gene copies. Furthermore, multiple sequence alignment revealed important sites affecting the activities of PEPC and RbcS between the C3 and C4 species. Comparisons of expression characteristics confirmed that the expression patterns of non-photosynthetic gene copies were relatively conserved among species, while C4 gene copies in C4 species acquired new tissue expression patterns during evolution. Additionally, multiple sequence features that may affect C4 gene expression and subcellular localization were found in the coding and promoter regions. Our work emphasized the diversity of the evolution of different genes in the C4 photosynthetic pathway and confirmed that the specific high expression in the leaf and appropriate intracellular distribution were the keys to the evolution of C4 photosynthesis. The results of this study will help determine the evolutionary mechanism of the C4 photosynthetic pathway in Gramineae and provide references for the transformation of C4 photosynthetic pathways in wheat, rice, and other major C3 cereal crops.

15.
Mol Genet Genomics ; 286(5-6): 417-31, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22076104

RESUMO

Hybrid wheat development may contribute to higher, more stable yield and could result in greater food security for much of the world's growing population. YS type thermo-sensitive cytoplasmic male sterile (TCMS) wheat lines were developed for use in hybrid wheat breeding in China. To investigate the molecular mechanism of modulation of male fertility in the YS-type TCMS wheat lines, a ras GTPase-activating protein-binding protein (TaG3BP) was examined. The deduced amino acid sequence encoded by TaG3BP was conserved in the sequenced genomes of Embryophyte. TaG3BP expression in the anthers of YS-type TCMS lines taken at the critical fertility reversion stage of pollen development from male fertile anthers was higher than that from male-sterile anthers, either by quantitative real-time PCR or by western blot analysis. Sequence analysis on the cDNA and genomic DNA of TaG3BP in three kinds of K-type CMS wheat lines and their maintainers indicated that there were no significant difference between the genes or in their 5' flanking sequences. The TaG3BP expression revealed by quantitative real-time RT-PCR was lower in the young spikes of these CMS lines than that of their maintainers. This indicates that TaG3BP expression is associated with the modulation, from male-sterile to fertile, of the TCMS wheat line, and TaG3BP might be a key factor in the pathway responsible for the fertility reversion.


Assuntos
Cruzamento , Proteínas de Transporte , Fertilidade , Proteínas de Plantas/fisiologia , Proteínas Ativadoras de ras GTPase/fisiologia , Citoplasma , Flores , Genoma de Planta , Temperatura Alta , Infertilidade , Dados de Sequência Molecular , Análise de Sequência , Triticum
16.
Front Plant Sci ; 12: 747886, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082803

RESUMO

The proposed method is a modified and improved version of the existing "Allele-specific q-PCR" (ASQ) method for genotyping of single nucleotide polymorphism (SNP) based on fluorescence resonance energy transfer (FRET). This method is similar to frequently used techniques like Amplifluor and Kompetitive allele specific PCR (KASP), as well as others employing common universal probes (UPs) for SNP analyses. In the proposed ASQ method, the fluorophores and quencher are located in separate complementary oligonucleotides. The ASQ method is based on the simultaneous presence in PCR of the following two components: an allele-specific mixture (allele-specific and common primers) and a template-independent detector mixture that contains two or more (up to four) universal probes (UP-1 to 4) and a single universal quencher oligonucleotide (Uni-Q). The SNP site is positioned preferably at a penultimate base in each allele-specific primer, which increases the reaction specificity and allele discrimination. The proposed ASQ method is advanced in providing a very clear and effective measurement of the fluorescence emitted, with very low signal background-noise, and simple procedures convenient for customized modifications and adjustments. Importantly, this ASQ method is estimated as two- to ten-fold cheaper than Amplifluor and KASP, and much cheaper than all those methods that rely on dual-labeled probes without universal components, like TaqMan and Molecular Beacons. Results for SNP genotyping in the barley genes HvSAP16 and HvSAP8, in which stress-associated proteins are controlled, are presented as proven and validated examples. This method is suitable for bi-allelic uniplex reactions but it can potentially be used for 3- or 4-allelic variants or different SNPs in a multiplex format in a range of applications including medical, forensic, or others involving SNP genotyping.

17.
Front Plant Sci ; 11: 1091, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849679

RESUMO

In wheat breeding, improved quality traits, including grain quality and dough rheological properties, have long been a critical goal. To understand the genetic basis of key quality traits of wheat, two single-locus and five multi-locus GWAS models were performed for six grain quality traits and three dough rheological properties based on 19, 254 SNPs in 267 bread wheat accessions. As a result, 299 quantitative trait nucleotides (QTNs) within 105 regions were identified to be associated with these quality traits in four environments. Of which, 40 core QTN regions were stably detected in at least three environments, 19 of which were novel. Compared with the previous studies, these novel QTN regions explained smaller phenotypic variation, which verified the advantages of the multi-locus GWAS models in detecting important small effect QTNs associated with complex traits. After characterization of the function and expression in-depth, 67 core candidate genes involved in protein/sugar synthesis, histone modification and the regulation of transcription factor were observed to be associated with the formation of grain quality, which showed that multi-level regulations influenced wheat grain quality. Finally, a preliminary network of gene regulation that may affect wheat quality formation was inferred. This study verified the power and reliability of multi-locus GWAS methods in wheat quality trait research, and increased the understanding of wheat quality formation mechanisms. The detected QTN regions and candidate genes in this study could be further used for gene cloning and marker-assisted selection in high-quality breeding of bread wheat.

18.
Yi Chuan ; 30(3): 373-9, 2008 Mar.
Artigo em Zh | MEDLINE | ID: mdl-18332009

RESUMO

Exploring novel genes and gene combinations are of primary importance in plant drought-tolerance and water-saving research. Based on the EST sequence of MYB gene obtained in the research on molecular basis of drought-tolerance and water-saving in broomcorn millet (Panicum miliaceum L.), a 1 739 bp genomic sequence of MYB gene, designated PmMYB, was amplified using primers based on this EST sequence and that of rice MYB18. Sequence analysis indicated that PmMYB consisted of 2 introns, 121 bp (347-467 bp) and 93 bp (599-691 bp) in length respectively, and 3 extrons. The full-length cDNA sequence of PmMYB is 1 525 bp, which includes 212 bp 3' untranslated region, 41 bp 5' untranslated region, and 1 272 bp coding region which encodes 424 amino acids with a serine-rich region. PmMYB is a typical R2, R3-MYB transcription factor with its 2 typical DNA-binding domains (amino acid sites of 13-63 and 66-114). The multiple alignment of R2, R3 amino acid repeat regions of MYB genes among broomcorn millet, rice, corn, loblolly pine, Arabidopsis, capsicum, upland cotton, barley and aubergine indicates that R2, R3 repeat regions are very conserved. The phylogenetic analysis based on amino acid sequence shows that MYB genes are highly divergent with similarity ranging from 32% to 84%. PmMYB has the highest similarity (84%) with MYB18 gene of rice, whereas 46% and 41% with barley and corn, respectively. Semi-quantitative RT-PCR confirmed that PmMYB was upregulated by water stress and re-watering in broomcorn millet. Cloning this gene may provide a good foundation to improve the drought-tolerance and water-saving in broomcorn millet as well as in other plants.


Assuntos
Clonagem Molecular/métodos , Secas , Expressão Gênica/genética , Panicum/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência
19.
Front Plant Sci ; 9: 1312, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405643

RESUMO

The gibberellin-responsive dwarfing gene Rht12 can significantly reduce plant height without changing seedling vigor and substantially increase ear fertility in bread wheat (Triticum aestivum. L). However, Rht12 delays heading date and anthesis date, hindering the use of Rht12 in wheat improvement. To promote early flowering of the Rht12 dwarf plants, the photoperiod-insensitive allele Ppd-D1a was introduced through a cross between Jinmai47 (Ppd-D1a) and Karcagi (Rht12). The results showed that Ppd-D1a can rescue the delaying effect of Rht12 on flowering time and promote earlier flowering by 9.0 days (163.2°Cd) in the Rht12 dwarf plants by shortening the late reproduction phase. Plant height was reduced by Rht12 (43.2%) and Ppd-D1a (10.9%), achieving dwarf plants with higher lodging resistance. Ear fertility, like the grain number per spike, was significantly increased by Rht12 (21.3%), while it was reduced by Ppd-D1a (6.5%). However, thousand kernel weight was significantly reduced by Rht12 (12.9%) but significantly increased by Ppd-D1a (16.9%). Finally, plant yield was increased by 16.4 and 8.2%, and harvest index was increased by 24.9 and 15.4% in the Rht12 dwarf lines and tall lines with Ppd-D1a, respectively. Clearly, there was an additive interaction between Rht12 and Ppd-D1 and the introduction of Ppd-D1a advanced the flowering time and improved the yield traits of Rht12 dwarf plants, suggesting that the combination of Rht12 and Ppd-D1a would be conducive to the successful use of Rht12 in wheat breeding programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA