Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Analyst ; 144(8): 2716-2724, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30865189

RESUMO

The rapid and sensitive detection of H2O2 is of great importance for a series of industries. In this work, surface-modified FePt nanoparticles were loaded into metal-organic frameworks (MOFs, MIL-101(Fe)) in a facile in situ way and the resulting material (FePt@MOFs NCs) acted as a high efficient colorimetric detection agent. The as-prepared FePt@MOFs NCs possess a well-defined octahedron shape and high stability in water. Via the oxidation reaction of the chromogenic substrate 4,4'-bi-2,6-xylidine, the obtained FePt@MOFs NCs were proved to possess prominent peroxidase-mimic activity. Under the most favorable conditions, the linear range for H2O2 detection was 40 µM to 800 µM and the detection limit was 18.9 µM. Furthermore, FePt@MOFs NCs were successfully applied to the detection of H2O2 in real samples such as fruit juice. The developed colorimetric sensing platform is expected to have potential for the exact detection of H2O2 for the food, mining and bio-pharmaceutical industries, due to its high stability, sensitivity, rapidness and easy preparation.

2.
Nanotechnology ; 30(28): 285706, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30849773

RESUMO

Circulating tumor cells (CTCs) are a type of rare cell that are firstly shed from solid tumors and then exist in the bloodstream. The effective capture and separation of CTCs has significant meaning in cancer diagnosis and prognosis. In this study, novel Fe3O4-FePt magnetic nanocomposites (Fe3O4-FePt MNCs) were constructed by integrating face centered cubic (fcc) FePt nanoparticles (NPs) onto the surface of the Fe3O4@SiO2 core. After further modification with NH2-PEG-COOH and the tumor-targeting molecule tLyP-1, the acquired Fe3O4-FePt MNCs possesses excellent biocompatibility and stability and could efficiently target and capture tLyP-1 receptor-positive CTCs. Based on the acidic microenvironment within cancer cells, the FePt layer could rapidly release active Fe2+ ions, which could catalyze H2O2 into reactive oxygen species (ROS) and further induce in situ apoptosis in cancer cells while having no distinct cytotoxicity to normal cells. Moreover, the Fe3O4@SiO2 core with its intrinsic magnetism has huge potential for the bioseparation of CTCs. The in vitro ROS fluorescence imaging experiments and cell capture and separation experiments indicated that the Fe3O4-FePt MNCs could specifically capture and separate cancer cells in the CTCs model and further induce in situ apoptosis. Therefore, the Fe3O4-FePt MNCs could serve as a promising multifunctional nanoseparator for efficiently capturing CTCs and simultaneously inducing in situ chemotherapy.


Assuntos
Separação Celular/métodos , Tratamento Farmacológico/métodos , Nanopartículas de Magnetita/química , Células Neoplásicas Circulantes/química , Sobrevivência Celular , Compostos Férricos/química , Humanos , Ferro , Células MCF-7 , Nanopartículas de Magnetita/ultraestrutura , Microesferas , Platina/química , Espécies Reativas de Oxigênio
3.
J Biochem Mol Toxicol ; 33(3): e22258, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30368991

RESUMO

Tartrazine is a stable water-soluble azo dye widely used as a food additive, which could pose potential threats to humans and the environment. In this paper, we evaluated the response mechanism between tartrazine and lysozyme under simulated conditions by means of biophysical methods, including multiple spectroscopic techniques, isothermal titration calorimetry (ITC), and molecular docking studies. From the multispectroscopic analysis, we found that tartrazine could effectively quench the intrinsic fluorescence of lysozyme to form a complex and lead to the conformational and microenvironmental changes of the enzyme. The ITC measurements suggested that the electrostatic forces played a major role in the binding of tartrazine to lysozyme with two binding sites. Finally, the molecular docking indicated that tartrazine had specific interactions with the residues of Trp108. The study provides an important insight within the binding mechanism of tartrazine to lysozyme in vitro.


Assuntos
Simulação de Acoplamento Molecular , Muramidase/química , Tartrazina/química , Sítios de Ligação , Humanos , Muramidase/metabolismo , Conformação Proteica , Espectrometria de Fluorescência , Termodinâmica
4.
J Nanobiotechnology ; 17(1): 38, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30866971

RESUMO

BACKGROUND: Rapid and sensitive detection of H2O2 especially endogenous H2O2 is of great importance for series of industries including disease diagnosis and therapy. In this work, uniform FePt nanoparticles are successfully anchored onto Few-layer molybdenum disulfide nanosheets (F-MoS2 NSs). The powder X-ray diffraction, transmission electron microscopy, UV-Vis spectra and atomic force microscopy were employed to confirm the structure of the obtained nanocomposites (F-MoS2-FePt NCs). The prepared nanocomposites show efficient peroxidase-like catalytic activities verified by catalyzing the peroxidation substrate 4,4'-diamino-3,3',5,5'-tetramethylbiphenyl (TMB) with the existence of H2O2. RESULTS: The optimal conditions of the constructed colorimetric sensing platform is proved as 35 °C and pH 4.2. Under optimal catalytic conditions, the detection limit for H2O2 detection reaches 2.24 µM and the linear ranger is 8 µM to 300 µM. Furthermore, the proposed colorimetric sensing platform was successfully utilized to detect the intracellular H2O2 of cancer cells (MCF-7). CONCLUSIONS: These findings indicated that the F-MoS2-FePt-TMB-H2O2 system provides a potential sensing platform for hydrogen peroxide monitoring in living cells.


Assuntos
Colorimetria , Dissulfetos/química , Peróxido de Hidrogênio/análise , Ferro/química , Molibdênio/química , Nanocompostos/química , Platina/química , Ligas/química , Catálise , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Oxirredução , Peroxidases/metabolismo
5.
Bioconjug Chem ; 28(2): 400-409, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28042941

RESUMO

Multifunctional nanotheranostic agents have been highly commended due to the application to image-guided cancer therapy. Herein, based on the chemically disordered face centered cubic (fcc) FePt nanoparticles (NPs) and graphene oxide (GO), we develop a pH-responsive FePt-based multifunctional theranostic agent for potential in vivo and in vitro dual modal MRI/CT imaging and in situ cancer inhibition. The fcc-FePt will release highly active Fe ions due to the low pH in tumor cells, which would catalyze H2O2 decomposition into reactive oxygen species (ROS) within the cells and further induce cancer cell apoptosis. Conjugated with folic acid (FA), the iron platinum-dimercaptosuccinnic acid/PEGylated graphene oxide-folic acid (FePt-DMSA/GO-PEG-FA) composite nanoassemblies (FePt/GO CNs) could effectively target and show significant toxicity to FA receptor-positive tumor cells, but no obvious toxicity to FA receptor-negative normal cells, which was evaluated by WST-1 assay. The FePt-based multifunctional nanoparticles allow real-time monitoring of Fe release by T2-weighted MRI, and the selective contrast enhancement in CT could be estimated in vivo after injection. The results showed that FePt-based NPs displayed excellent biocompatibility and favorable MRI/CT imaging ability in vivo and in vitro. Meanwhile, the decomposition of FePt will dramatically decrease the T2-weighted MRI signal and increase the ROS signal, which enables real-time and in situ visualized monitoring of Fe release in tumor cells. In addition, the self-sacrificial decomposition of fcc-FePt will be propitious to the self-clearance of the as-prepared FePt-based nanocomposite in vivo. Therefore, the FePt/GO CNs could serve as a potential multifunctional theranostic nanoplatform of MRI/CT imaging guided cancer diagnosis and therapy in the clinic.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Nanomedicina Teranóstica/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Grafite/química , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Nanopartículas Metálicas/química , Camundongos , Modelos Moleculares , Conformação Molecular , Óxidos/química , Fatores de Tempo , Resultado do Tratamento
6.
J Mater Chem B ; 12(5): 1285-1295, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38189142

RESUMO

The design of multifunctional nanomedicine through the combination of multimodal treatments to achieve the optimal antitumor effect is essential for cancer therapy. Herein, we design and develop a multifunctional theranostic nanoplatform using an iron ion-doxorubicin (DOX) nanoscale coordination polymer (Fe/DOX NCP) as a shell coating on the surface of polyvinyl pyrrolidone (PVP) stabilized copper-diethyldithiocarbamate nanoparticles (Cu(DDC)2 NPs) for combined tumor chemo-/photothermal/chemodynamic therapy. The obtained Cu(DDC)2@Fe/DOX NPs display pH/laser dual-responsive degradation behavior and also exhibit favorable photothermal performance. Under 808 nm laser irradiation, Cu(DDC)2@Fe/DOX NPs can convert light into heat, which not only kills tumor cells via hyperthermia in photothermal therapy (PTT), but also accelerates the degradation of Fe/DOX NCPs to release Fe3+ and DOX. The liberated Fe3+ can be used to catalyze hydrogen peroxide via the Fenton reaction to produce highly toxic hydroxyl radicals (˙OH) in chemodynamic therapy (CDT). The released DOX and the exposed Cu(DDC)2 can cause significant cell death in combined chemotherapy via a superimposed effect. In vitro and in vivo results prove that Cu(DDC)2@Fe/DOX NPs with laser irradiation present remarkable anticancer performances in hyperthermia-enhanced chemo-/CDT. Therefore, this study provides a new strategy for highly efficient synergistic cancer therapy.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Cobre/farmacologia , Fototerapia/métodos , Terapia Fototérmica , Nanomedicina , Hipertermia Induzida/métodos , Doxorrubicina/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia
7.
J Mater Chem B ; 12(6): 1512-1522, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38251988

RESUMO

A proven and promising method to improve the catalytic performance of single-atom catalysts through the interaction between bimetallic atoms to change the active surface sites or adjust the catalytic sites of reactants is reported. In this work, we used an iron-platinum bimetallic reagent as the metal source to precisely synthesise covalent organic framework-derived diatomic catalysts (FePt-DAC/NC). Benefiting from the coordination between the two metal atoms, the presence of Pt single atoms can successfully regulate Fe-N3 activity. FePt-DAC/NC exhibited a stronger ability to catalyze H2O2 to produce toxic hydroxyl radicals than Fe single-atom catalysts (Fe-SA/NC) to achieve chemodynamic therapy of tumors (the catalytic efficiency improved by 186.4%). At the same time, under the irradiation of an 808 nm laser, FePt-DAC/NC exhibited efficient photothermal conversion efficiency to achieve photothermal therapy of tumors. Both in vitro and in vivo results indicate that FePt-DAC/NC can efficiently suppress tumor cell growth by a synergistic therapeutic effect with photothermally augmented nanocatalytic therapy. This novel bimetallic dual active-site monodisperse catalyst provides an important example for the application of single-atom catalysts in the biomedical field, highlighting its promising clinical potential.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Domínio Catalítico , Catálise , Ciclo Celular , Proliferação de Células
8.
Nanoscale ; 15(5): 2305-2315, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36636960

RESUMO

Atomically dispersed metal clusters are considered as promising nanocatalysts due to their excellent physicochemical properties. Here, we report a novel strategy for precisely designing Fex (x = 1-2) cluster nanocatalysts (Fe1-N-C and Fe2-N-C) with dual catalytic activity, which can catalyze H2O2 into reactive oxygen species (ROS) and oxidize glutathione (GSH) into glutathione disulfide simultaneously. The adsorption energies of Fe-N sites in Fe2-N-C for GSH and H2O2 intermediates were well controlled due to the orbital modulation of adjacent Fe sites, contributing to the higher dual catalytic activity compared to Fe1-N-C. Additionally, tamoxifen (TAM) was loaded into Fe2-N-C (Fe2@TDF NEs) to down-regulate the intracellular pH for higher Fenton-like catalytic efficiency and ROS production. The generated ROS could induce apoptosis and lipid peroxidation, triggering ferroptosis. Meanwhile, upregulation of ROS and lipid peroxidation, along with GSH depletion and GPX4 downregulation could promote the apoptosis and ferroptosis of tumor cells. In addition, the lactic acid accumulation effect of TAM and the high photothermal conversion ability of Fe2@TDF NEs could further enhance the catalytic activity to achieve synergistic antitumor effects. As a result, this work highlights the critical role of adjacent metal sites at the atomic-level and provides a rational guidance for the design and application of nanocatalytic antitumor systems.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Apoptose , Linhagem Celular Tumoral , Glutationa , Peróxido de Hidrogênio/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fototerapia , Espécies Reativas de Oxigênio/farmacologia , Ferro/química , Catálise , Nanoestruturas
9.
Nanoscale ; 14(23): 8441-8453, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35647731

RESUMO

With the advancement and development of nanomedicine, tumor precision therapy provides technical support for effective accumulation and targeted drug delivery, and reduces toxic side effects. In cancer cells, breaking the redox balance could induce cancer cell death. Herein, a novel iron-containing intelligent hydrogel nanobot (FeSe2-Ce6/MOF@HA/PEI/CpG@HHPA NPs, abbreviated as FSMH) is proposed to break the intracellular redox balance and trigger the immune response. The as-fabricated multifunctional FSMH could not only exert Fenton reactions in the acidic tumor microenvironment, converting hydrogen peroxide (H2O2) into highly toxic hydroxyl radicals (˙OH), but also effectively consume GSH to attenuate the intracellular oxidative stress. The negative charge of the FSMH nanohydrogel system guarantees its superexcellent stabilization in blood circulation and optimal tumor collection. Subsequently, the surface charge of the endocytosed FSMH was transformed to a positive charge after exposure to the acidic tumor environment, further improving its tumor collection and locally releasing Fe ions and immune adjuvants. Furthermore, Ce6 was released in a pH-responsive manner in the acidic microenvironment. In the presence of near-infrared light, singlet oxygen was produced by the FSMH nanohydrogel system, to ablate tumors and promote the maturation of dendritic cells, achieving the precision-combined strategies effect of CDT, PDT, and immunotherapy.


Assuntos
Ferroptose , Neoplasias , Linhagem Celular Tumoral , Humanos , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Peróxido de Hidrogênio/uso terapêutico , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oxirredução , Microambiente Tumoral
10.
Nanomaterials (Basel) ; 12(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35808134

RESUMO

To enhance the utilization efficiency of visible light and reduce the recombination of photogenerated electrons and holes, spindle-shaped TiO2 photocatalysts with different Ti3+ concentrations were fabricated by a simple solvothermal strategy using low-cost, environmentally friendly TiH2 and H2O2 as raw materials and triethanolamine-aqueous as the medium. The photocatalytic activities of the obtained photocatalysts were investigated in the presence of visible light. X-ray diffraction (XRD), Raman spectra, transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) spectra were applied to characterize the structure, morphologies, and chemical compositions of as-fabricated Ti3+ self-doped TiO2. The concentration of triethanolamine in the mixed solvent plays a significant role on the crystallinity, morphologies, and photocatalytic activities. The electron-hole separation efficiency was found to increase with the increase in the aspect ratio of as-fabricated Ti3+ self-doped TiO2, which was proved by transient photocurrent response and electrochemical impedance spectroscopy.

11.
J Mater Chem B ; 10(3): 339-357, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34951441

RESUMO

The rapid development and wide application of nanomaterial-involved theranostic agents have drawn surging attention for improving the living standard of humankind and healthcare conditions. In this review, recent developments in the design, synthesis, biocompatibility evaluation and potential nanomedicine applications of FePt-involved nano-systems are summarized, especially for cancer theranostic and biological molecule detection. The in vivo multi-model imaging capability is discussed in detail, including magnetic resonance imaging and computed tomography. Furthermore, we highlight the significant achievements of various FePt-involved nanotherapeutics for cancer treatment, such as drug delivery, chemodynamic therapy, photodynamic therapy, radiotherapy and immunotherapy. In addition, a series of FePt-involved nanocomposites are also applied for biological molecule detection, such as H2O2, glucose and naked-eye detection of cancer cells. Ultimately, we also summarize the challenges and prospects of FePt-involved nano-systems in nanocatalytic medicine. This review is expected to give a general pattern for the development of FePt-involved nano-systems in the field of nanocatalytic medicine and analytical determination.


Assuntos
Antineoplásicos/uso terapêutico , Portadores de Fármacos/uso terapêutico , Nanocompostos/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Catálise , Linhagem Celular Tumoral , Portadores de Fármacos/química , Humanos , Peróxido de Hidrogênio/análise , Ferro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanocompostos/química , Platina/química , Medicina de Precisão
12.
Nanoscale ; 14(36): 13113-13122, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36052962

RESUMO

Recently, disulfiram (DSF), approved by the FDA as an anti-alcoholic drug, has been proved as an effective antitumor drug after chelating with Cu2+. To overcome the shortage of intracellular Cu2+, we have constructed a dual gate-controlled intelligent nanoreactor (HA-DSF@HCuS@FePtMn, HDHF) via the ingenious combination of hollow copper sulfide (HCuS) nanoparticles, DSF and FePtMn nanocrystals. HDHF has a NIR-actuated gate and enzyme-actuated gate that could be opened in the hyaluronidase-abundant tumor microenvironment with NIR laser irradiation to trigger drug (DSF/FePtMn) release and synergistic therapy. Moreover, the FePtMn nanocrystals could continuously release Fe2+, which could catalyze H2O2 into highly cytotoxic hydroxyl radicals (˙OH), triggering chemodynamic therapy (CDT). When exposed to NIR laser, HCuS could collapse and release Cu2+, which could immediately chelate with DSF, forming the effective anticancer drug (Cu(DTC)2) and enabling DSF-based chemotherapy. More importantly, the efficient photothermal therapy (PTT) effect of HCuS could accelerate the FePtMn-based CDT and the release of Cu2+/DSF, improving tumor treatment efficiency. Thus, this study represents a distinctive paradigm of a dual gate-controlled intelligent nanoreactor enabled PTT-augmented DSF-based chemotherapy and FePtMn-based CDT for cancer nanotherapy.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cobre/química , Cobre/farmacologia , Dissulfiram/farmacologia , Humanos , Hialuronoglucosaminidase , Peróxido de Hidrogênio , Nanotecnologia , Neoplasias/tratamento farmacológico , Sulfetos , Microambiente Tumoral
13.
ACS Appl Mater Interfaces ; 14(18): 20669-20681, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35471816

RESUMO

Recently, extending single-atom catalysts from mono- to binary sites has been proved to be a promising way to realize more efficient chemical catalytic processes. In this work, atomically dispersed Fe, Pt dinuclear catalysts ((Fe, Pt)SA-N-C) with an ca. 2.38 Šdistance for Fe1 (Fe-N3) and Pt1 (Pt-N4) could be precisely controlled via a novel secondary-doping strategy. In response to tumor microenvironments, the Fe-N3/Pt-N4 moieties exhibited synergistic catalytic performance for tumor catalytic therapy. Due to its beneficial microstructure and abundant active sites, the Fe-N3 moiety effectively initiated the intratumoral Fenton-like reaction to release a large amount of toxic hydroxyl radicals (•OH), which further induced tumor cell apoptosis. Meanwhile, the bonded Pt-N4 moiety could also enhance the Fenton-like activity of the Fe-N3 moiety up to 128.8% by modulating the 3d electronic orbitals of isolated Fe-N3 sites. In addition, the existence of amorphous carbon revealed high photothermal conversion efficiency when exposed to an 808 nm laser, which synergistically achieved an effective oncotherapy outcome. Therefore, the as-obtained (Fe, Pt)SA-N-C-FA-PEG has promising potential in the bio-nanomedicine field for inhibiting tumor cell growth in vitro and in vivo.


Assuntos
Radical Hidroxila , Nanomedicina , Catálise , Luz
14.
ACS Appl Mater Interfaces ; 14(36): 40633-40644, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36052606

RESUMO

The combination of various therapeutic modalities has received considerable attention for improving antitumor performance. Herein, an innovative nanohybrid, namely CaO2@FePt-DOX@PDA@CM (CFDPM), was developed for synergistic chemotherapy/chemodynamic therapy/Ca2+ overloading-mediated amplification of tumor oxidative stress and photothermal enhanced cancer therapy. Camouflage of the 4T1 cell membrane enabled CFDPM to escape the immune surveillance and accumulate in the tumor tissue. Ca2+, released from CaO2, could lead to mitochondrial dysfunction and facilitate the production of reactive oxygen species to amplify intracellular oxidative stress. Meanwhile, the increase of H2O2 concentration could enhance the efficiency of the chemodynamic therapy (CDT). Moreover, the hypoxic condition could be alleviated remarkably, which is attributed to the sufficient O2 supply by CaO2, resulting in the suppression of drug resistance and promotion of the chemotherapeutic effect. The nanohybrids involving Ca2+ overloading/CDT/chemotherapy could synergistically amplify the tumor oxidative stresses and remarkably aggravate the death of cancer cells. Significantly, the excellent photothermal conversion performance of CFDPM could further promote the tumoricidal effect. The in vitro and in vivo studies revealed that CFDPM could effectively advance the therapeutic efficiency via the cooperation of various therapeutic modalities to optimize their individual virtue, which would open a valuable avenue for effective cancer treatment.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Humanos , Peróxido de Hidrogênio/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Estresse Oxidativo , Células Oxífilas/metabolismo , Células Oxífilas/patologia , Fototerapia/métodos
15.
J Mater Chem B ; 9(40): 8480-8490, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34553729

RESUMO

The development of versatile nanotheranostic agents has received increasing interest in cancer treatment. Herein, in this study, we rationally designed and prepared a novel flowerlike multifunctional cascade nanoreactor, BSA-GOx@MnO2@FePt (BGMFP), by integrating glucose oxidase (GOx), manganese dioxide (MnO2) and FePt for synergetic cancer treatment with satisfying therapeutic efficiency. In an acidic environment, intratumoral H2O2 could be decomposed to O2 to accelerate the consumption of glucose catalyzed by GOx to induce cancer starvation. Moreover, the accumulation of gluconic acid and H2O2 generated along with the consumption of glucose would in turn promote the catalytic efficiency of MnO2 and boost O2 evolution, which could enhance the efficiency of starvation therapy. Moreover, FePt as an excellent Fenton agent could simultaneously convert H2O2 to the toxic hydroxyl radical (˙OH), subsequently resulting in amplified intracellular oxidative stress and cell apoptosis. Therefore, BGMFP could catalyze a cascade of intracellular biochemical reactions and optimize the unique properties of MnO2, GOx and FePt via mutual promotion of each other to realize O2 supply, chemodynamic therapy (CDT) and starvation therapy. The anticancer results in vitro and in vivo demonstrated that BGMFP possessed remarkable tumor inhibition capacity through enhancing the starvation therapy and CDT. It is appreciated that BGMFP could be a promising platform for synergetic cancer treatment.


Assuntos
Glucose Oxidase , Compostos de Ferro , Compostos de Manganês , Nanotecnologia , Neoplasias , Óxidos , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Compostos de Ferro/química , Compostos de Manganês/química , Neoplasias/terapia , Óxidos/química , Oxigênio , Nanomedicina Teranóstica , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Mater Chem B ; 8(24): 5351-5360, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32458958

RESUMO

The construction of multi-functional oncotherapy nano-platforms combining diagnosis and therapy remains a tough challenge. Prussian blue nano-cubes with optimized particle size were applied as photothermal agents and loaded with FePt NPs, effective ferroptosis agents, on the surface via an in situ reduction strategy. To attain the goal of precise medicine, hyaluronic acid was wrapped around the surface of the nanocomposites (PB@FePt NCs) for highly specific recognition of tumor cells. Finally, we successfully designed and fabricated a nano-agent (PB@FePt-HA-g-PEG NCs) to serve as a versatile nano-platform with both highly specific targeting ability for chemodynamic-photothermal co-therapy and triple-modal imaging (magnetic resonance/computed tomography/photothermal imaging) capability. Via intravenous injection, the as-constructed oncotherapy nano-platform could effectively ablate 4T1 tumor xenografts with excellent biocompatibility for chemodynamic-photothermal co-therapy. In this study we conducted a reasonable exploration to design multi-functional oncotherapy nano-platforms combining multiplexed imaging diagnosis and high therapeutic performance, which provides an innovative paradigm for precision cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Imageamento por Ressonância Magnética , Nanocompostos/química , Imagem Óptica , Fototerapia , Nanomedicina Teranóstica , Tomografia Computadorizada por Raios X , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ferrocianetos/química , Ferrocianetos/farmacologia , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Ferro/química , Ferro/farmacologia , Camundongos , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Tamanho da Partícula , Platina/química , Platina/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Propriedades de Superfície
17.
Adv Healthc Mater ; 9(21): e1901634, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32959536

RESUMO

Multimodal imaging-guided synergistic anticancer strategies have attracted increasing attention for efficient diagnosis and therapy of cancer. Herein, a multifunctional nanotheranostic agent FePtMn-Ce6/FA (FPMCF NPs) is constructed by covalently anchoring photosensitizer chlorin e6 (Ce6) and targeting molecule folic acid (FA) on ultrasmall homogeneous ternary FePtMn nanocrystals. Response to tumor microenvironment (TME), FPMCF NPs can release Fe2+ to catalyze H2 O2 into •OH by Fenton reaction and simultaneously catalyze hydrogen peroxide (H2 O2 ) into O2 to overcome the tumor hypoxia barrier. Released O2 is further catalyzed into 1 O2 under 660 nm laser irradiation with Ce6. Thus, the FPMCF NPs exhibit superior dual-ROS oxidization capability including ferroptosis chemodynamic oxidization and 1 O2 -based photodynamic oxidization. Interestingly, FPMCF NPs reveal strong photothermal conversion efficiency exposed to an 808 nm laser, which can assist dual-ROS oxidization to suppress solid tumor remarkably. Additionally, Mn2+ can be released from FPMCF NPs to enhance longitudinal relaxivity (T1 -weighted magnetic resonance (MR) imaging) and Fe-synergistic transverse relaxivity (T2 -weighted MR imaging), which is convenient for diagnosis of solid tumors. Meanwhile, the fluorescent/photothermal (FL/PT) imaging function of FPMCF NPs can also accurately monitor tumor location. Therefore, FPMCF NPs with multimodal MR/FL/PT imaging-guided synergistic chemodynamic/photodynamic/photothermal cancer therapy capability have potential bioapplication in bionanomedicine field.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Hipóxia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Microambiente Tumoral
18.
Nanoscale ; 11(42): 19912-19922, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31599915

RESUMO

The metastasis and recurrence of tumors are the main reasons for cancer death. In this work, a promising therapy for tumor treatment that can eliminate primary tumors and prevent tumor relapses is introduced by combining chemotherapy, photothermal therapy (PTT) and immunotherapy. Multifunctional FePt/MoS2-FA nanocomposites (FPMF NCs) were obtained via anchoring FePt nanoparticles and folic acid (FA) on MoS2 nanosheets. As an efficient ferroptosis agent, FePt nanoparticles could catalyze the Fenton reaction to produce the reactive oxygen species (ROS). Through the highly effective photothermal conversion of MoS2 nanosheets, the primary tumor cells could be ablated by photothermal therapy (PTT). Moreover, the metastatic tumors were eliminated effectively with the help of oligodeoxynucleotides containing cytosine-guanine (CpG ODNs) combined with systemic checkpoint blockade therapy using an anti-CTLA4 antibody. Even more intriguingly, a strong immunological memory effect was obtained by this synergistic therapy. Taking all these results into consideration, we anticipate that the photo-chemo-immunotherapy strategies show great promise toward the development of a multifunctional platform for anticancer therapeutic applications.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Hipertermia Induzida , Nanopartículas Metálicas , Nanocompostos , Neoplasias Experimentais/terapia , Oligodesoxirribonucleotídeos/farmacologia , Fototerapia , Microambiente Tumoral/efeitos dos fármacos , Animais , Ácido Fólico/química , Ácido Fólico/farmacologia , Células HeLa , Humanos , Imunoterapia , Ferro/química , Ferro/farmacologia , Células MCF-7 , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Nanocompostos/química , Nanocompostos/uso terapêutico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Platina/química , Platina/farmacologia , Microambiente Tumoral/imunologia
19.
Nanoscale ; 10(37): 17858-17864, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30221289

RESUMO

Ferroptosis as an emerging mechanism has become a research hotspot for killing cancer cells. In this work, a novel ferroptosis agent, FePt-PTTA-Eu3+-FA (FPEF), was rationally designed by harnessing the luminescent lanthanide complexes PTTA-Eu3+ and folic acid (FA) in FePt nanoparticles. FePt-Based nanomaterials have potential applications in magnetic resonance imaging/computed tomography (MRI/CT) in clinical diagnosis and have excellent capacity to induce cancer cell death. Mechanistic studies of FPEP showed that the FePt induced cancer cell death was affirmed as the ferroptosis mechanism. To the best of our knowledge, it will be the first report that proves the existence of the ferroptosis process in FePt NPs. The in vitro tests of FPEF demonstrated that the as-prepared NPs exhibit a satisfactory anticancer effect towards FA-positive tumor cells including 4T1, MCF-7 and HeLa cells. The in vivo studies using tumor-bearing balb/c mice revealed that the FPEF NPs could significantly inhibit tumor progression. Such all-in-one therapeutic strategies have great potential in early diagnosis, prognosis and treatment of cancer.


Assuntos
Morte Celular , Compostos Férricos/farmacologia , Nanopartículas , Neoplasias Experimentais/terapia , Compostos de Platina/farmacologia , Animais , Ácido Fólico , Células HeLa , Humanos , Células MCF-7 , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA