Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Enzyme Inhib Med Chem ; 39(1): 2295241, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38134358

RESUMO

Colorectal cancer (CRC) is one of the most common cancers worldwide. Nowadays, owing to the complex mechanism of tumorigenesis, simultaneous inhibition of multiple targets is an important anticancer strategy. Recent studies have demonstrated receptor tyrosine kinase AXL (AXL) and histone deacetylase 2 (HDAC2) are closely associated with colorectal cancer. Herein, we identified five hit compounds concurrently targeting AXL and HDAC2 using virtual screening. Inhibitory experiments revealed these hit compounds potently inhibited AXL and HDAC2 in the nanomolar range. Among them, Hit-3 showed the strongest inhibitory effects which were better than that of the positive control groups. Additionally, MD assays showed that Hit-3 could bind stably to the AXL and HDAC2 active pockets. Further MTT assays demonstrated that Hit-3 showed potent anti-proliferative activity. Most importantly, Hit-3 exhibited significant in vivo antitumor efficacy in xenograft models. Collectively, this study is the first discovery of dual-targeting AXL/HDAC2 inhibitors for colorectal cancer treatment.


Assuntos
Neoplasias Colorretais , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Farmacóforo , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Detecção Precoce de Câncer , Neoplasias Colorretais/tratamento farmacológico
2.
BMC Geriatr ; 23(1): 10, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609228

RESUMO

BACKGROUND: This study explored the impact of MTM service on MMD patients with hypertension. METHODS: A total of 120 MMD inpatients from September to November 2019 were received and randomly divided into intervention group and control group. General services for noninfectious chronic diseases were given to the control group, while a standard MTM service was given to the intervention group. Patients' blood pressure, EQ-5D utility value, readmission rate, drug-related problems, and average daily medication therapy cost were compared between the two groups and within the groups. This was done at the initial admission phase and in the first, third, sixth, and twelfth months after discharge. RESULTS: The intervention group had significantly lower blood pressure and average daily medication therapy cost 12 months after discharge compared to the control group (systolic blood pressure: P = 0.023, diastolic blood pressure: P < 0.001, average daily medication therapy cost: P = 0.049); the number of DRPs decreased in both groups 12 months after discharge; the number of DRPs solved in the intervention group in the third, sixth and twelfth months after discharge were statistically higher compared with that in the control group (P = 0.013, P = 0.012, P = 0.001); there was no significant difference in the EQ-5D utility value and readmission rate between the two groups (P > 0.05). CONCLUSIONS: MTM implementation in MMD patients can improve health outcomes and reduce healthcare-related costs among MMD patients. TRIAL REGISTRATION: Chinese Clinical Trial Register ChiCTR2200065111, date of registration: October 28, 2022.


Assuntos
Hipertensão , Conduta do Tratamento Medicamentoso , Humanos , Multimorbidade , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Pressão Sanguínea , Custos de Cuidados de Saúde
3.
Bioorg Med Chem Lett ; 30(20): 127490, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32791195

RESUMO

Diabetic nephropathy (DN) is a severe microvascular complication of diabetes mellitus. Oxidative stress and fibrosis largely contribute to the progression of DN. Recently, Nrf2 was found to be a potential target preventing DN. In the discovery of novel Nrf2 activators for the treatment of DN, we have evaluated coumarin derivatives from Wikstroemi indiaca. Molecular docking results have shown compound 4 could bind to Keap1 and activate Nrf2 significantly. Cell-based assays have revealed compound 4 activated Nrf2 and attenuated oxidative stress and fibrosis induced by high glucose in mesangial cells. Meanwhile, it was validated that disruption of the interaction between Keap1 and Nrf2 was involved in the activation of Nrf2 by compound 4 in mesangial cells under high glucose.


Assuntos
Cumarínicos/farmacologia , Descoberta de Drogas , Fibrose/tratamento farmacológico , Glucose/antagonistas & inibidores , Células Mesangiais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Relação Dose-Resposta a Droga , Fibrose/metabolismo , Fibrose/patologia , Glucose/farmacologia , Humanos , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade
4.
Bioorg Med Chem ; 28(24): 115833, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33166928

RESUMO

Diabetic nephropathy (DN) is a severe microvascular complication of diabetes mellitus. High glucose has resulted in oxidative stress and following renal fibrosis as the crucial nodes of this disease. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor regulating transcription of many antioxidant genes and suppressing synthesis of extracellular matrix. To discover Nrf2 activators targeting DN, we have evaluated polypodiside using cell-based assays. The results showed polypodiside inhibited the high glucose-induced self-limited proliferation of glomerular meangial cells. Activation of Nrf2 and enhanced transcription to antioxidant response elements were observed in the presence of polypodiside. Oxidative stress and accumulation of extracellular matrix induced by high glucose in glomerular meangial cells have been ameliorated by polypodiside. Further investigations revealed the effects of polypodiside on glomerular meangial cells were associated with activation of Nrf2. Co-immunoprecipitation of Nrf2 disclosed polypodiside disrupted the Kelch-like ECH-associated protein-1 (Keap1)-Nrf2 interaction. Molecular docking elucidated polypodiside could enter the Nrf2 binding cavity of Keap1 via interacting with the residues encompassing that cavity. These findings indicate polypodiside is a Keap1-dependent Nrf2 activator affording the catabatic effects against oxidative stress and accumulation of extracellular matrix in glomerular meangial cells under high glucose.


Assuntos
Matriz Extracelular/metabolismo , Glucosídeos/farmacologia , Fator 2 Relacionado a NF-E2/agonistas , Estresse Oxidativo/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ácidos Cumáricos/química , Avaliação Pré-Clínica de Medicamentos , Matriz Extracelular/efeitos dos fármacos , Glucose/farmacologia , Glucosídeos/química , Glucosídeos/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Células Mesangiais/citologia , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Polypodium/química , Polypodium/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Phytomedicine ; 91: 153685, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34339945

RESUMO

BACKGROUND: Polygoni Orientalis Fructus (POF) refers to the dried ripe fruit of Polygonum orientale L. which has a long historical application in clinic for treatment of various conditions in China. However, its chemical constituents, pharmacological effects and their coupled correlation have not been intensively investigated. PURPOSE: In present work, we aimed to elucidate the medicinal material basis, optimum indication and corresponding therapeutic mechanism of POF. METHODS: The main phytochemical ingredients in POF were characterized by liquid chromatography-mass spectrometry (LC-MS) analysis. The optimum medicinal potential and corresponding molecular mechanism of POF were deduced based on integrated statistic pattern recognition and network pharmacology. The deduced pharmacologic efficacy and mechanism of POF were further validated through in vitro study in free-fatty acid (FFA)-induced LO2 cells. RESULTS: Total 30 main phytochemical ingredients were identified in POF in which 18 ingredients were screened to yield 277 potential targets. Based on analyzing the quantitative data matrix of drug-disease targets by statistic pattern recognition, non-alcoholic fatty liver disease (NAFLD) was screened as the optimum indication of POF from 23 candidate diseases. Promising action targets (PPARG, IL6, TNF, IL1B, IKBKB, RELA, etc.) and signaling pathways (AMPK signaling pathway, NF-κB signaling pathway, etc.) were screened and refined to elucidate the therapeutic mechanism of POF against NAFLD based on network pharmacology. In vitro study demonstrated that POF effectively alleviated FFA-induced steatosis, oxidative stress, mitochondrial dysfunction and inflammation, and these beneficial effects were attributed to the activation of AMPK signaling pathway and suppression of NF-κB signaling pathway. CONCLUSION: POF could be exploited as a promising phytotherapy in the treatment of NAFLD.


Assuntos
Medicamentos de Ervas Chinesas , Hepatopatia Gordurosa não Alcoólica , Polygonum/química , Adenilato Quinase , Linhagem Celular , Medicamentos de Ervas Chinesas/farmacologia , Frutas/química , Hepatócitos/efeitos dos fármacos , Humanos , NF-kappa B , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA