Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 135(10): 713-723, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31951650

RESUMO

Chimeric antigen receptor (CAR) T cells have radically improved the treatment of B cell-derived malignancies by targeting CD19. The success has not yet expanded to treat acute myeloid leukemia (AML). We developed a Sequentially Tumor-Selected Antibody and Antigen Retrieval (STAR) system to rapidly isolate multiple nanobodies (Nbs) that preferentially bind AML cells and empower CAR T cells with anti-AML efficacy. STAR-isolated Nb157 specifically bound CD13, which is highly expressed in AML cells, and CD13 CAR T cells potently eliminated AML in vitro and in vivo. CAR T cells bispecific for CD13 and TIM3, which are upregulated in AML leukemia stem cells, eradicated patient-derived AML, with much reduced toxicity to human bone marrow stem cells and peripheral myeloid cells in mouse models, highlighting a promising approach for developing effective AML CAR T cell therapy.


Assuntos
Leucemia Mieloide Aguda , Receptores de Antígenos de Linfócitos T , Animais , Antígenos CD13 , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Imunoterapia Adotiva , Camundongos , Linfócitos T
2.
Nature ; 525(7568): 206-11, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26331536

RESUMO

TP53 (which encodes p53 protein) is the most frequently mutated gene among all human cancers. Prevalent p53 missense mutations abrogate its tumour suppressive function and lead to a 'gain-of-function' (GOF) that promotes cancer. Here we show that p53 GOF mutants bind to and upregulate chromatin regulatory genes, including the methyltransferases MLL1 (also known as KMT2A), MLL2 (also known as KMT2D), and acetyltransferase MOZ (also known as KAT6A or MYST3), resulting in genome-wide increases of histone methylation and acetylation. Analysis of The Cancer Genome Atlas shows specific upregulation of MLL1, MLL2, and MOZ in p53 GOF patient-derived tumours, but not in wild-type p53 or p53 null tumours. Cancer cell proliferation is markedly lowered by genetic knockdown of MLL1 or by pharmacological inhibition of the MLL1 methyltransferase complex. Our study reveals a novel chromatin mechanism underlying the progression of tumours with GOF p53, and suggests new possibilities for designing combinatorial chromatin-based therapies for treating individual cancers driven by prevalent GOF p53 mutations.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Mutação/genética , Neoplasias/genética , Neoplasias/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Cromatina/química , Feminino , Genes Supressores de Tumor , Genoma Humano/genética , Histona Acetiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Masculino , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Neoplasias/metabolismo , Fenótipo , Ligação Proteica , Processamento de Proteína Pós-Traducional
3.
Stem Cells ; 37(9): 1189-1199, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31116894

RESUMO

Fertility and endocrine function rely on a tightly regulated synchronicity within the hypothalamic-pituitary-gonadal axis, for which the sex gonad serves as the primary source of sex steroid hormones and germ cells. To maintain hormonal stasis and fertility throughout the lifespan, inducing gonadal stem cell renewal is an attractive strategy. The follicle-stimulating hormone/cAMP/MAPK/Sox9 signaling axis and its regulated specific miRNAs are thought to regulate vertebrate gonadal development and sex differentiation, yet the regulatory networks are largely unknown. By genome-wide transcriptome mining and gonadal microinjections, we identify two G protein-coupled receptor (GPCR)-regulatory circuits: miR430a-Sox9a in the testis and miR218a-Sox9b in the ovary. Coinjection of a Sox9a-miR430a mixture promotes spermatogenesis, whereas Sox9b-miR218a mixture increases primordial ovarian follicles. Coimmunoprecipitation and mass spectrometry indicate that the two mixtures differentially modulate Sox9a/Sox9b multiple covalent modifications. We further reveal that miR430a and Sox9a synergistically activate testicular protein kinase C (PKC)/Akt signaling, whereas the miR218a and Sox9b mixture constrains ovary PKC/Akt signaling. pMIR-GFP reporter assay demonstrate that miR430a and miR218a target the 3' untranslated region (UTR) of four GPCR targets (lgr4, grk5l, grk4, and grp157). Knockdown of these GPCR genes or two Sox9 genes alters miR430a and miR218a regulation in the above gonad-specific PKC and Akt signaling pathways. These results establish two specific miRNA-GPCR-Sox9 networks and provide mechanistic insight into gonadal differentiation and rejuvenation. Stem Cells 2019;37:1189-1199.


Assuntos
MicroRNAs/genética , Ovário/metabolismo , Receptores Acoplados a Proteínas G/genética , Fatores de Transcrição SOX9/genética , Testículo/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Ovário/crescimento & desenvolvimento , Receptores Acoplados a Proteínas G/metabolismo , Rejuvenescimento , Fatores de Transcrição SOX9/metabolismo , Espermatogênese/genética , Testículo/crescimento & desenvolvimento , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Semin Cancer Biol ; 50: 32-41, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410116

RESUMO

FOXO proteins are a sub-group of a superfamily of forkhead box (FOX)-containing transcription factors (TFs). FOXOs play an important role in regulating a plethora of biological activities ranging from development, cell signaling, and tumorigenesis to cell metabolism. Here we mainly focus on reviewing the role of FOXOs in regulating tumor and metabolism. Moreover, how crosstalk among various pathways influences the function of FOXOs will be reviewed. Further, the paradoxical role for FOXOs in controlling the fate of cancer and especially resistance/sensitivity of cancer to the class of drugs that target PI3K/AKT will also be reviewed. Finally, how FOXOs regulate crosstalk between common cancer pathways and cell metabolism pathways, and how these crosstalks affect the fate of the cancer will be discussed.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Transcrição Forkhead/genética , Neoplasias/genética , Carcinogênese/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais
5.
J Comput Aided Mol Des ; 33(11): 973-981, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31758355

RESUMO

The Glucagon-like peptide 1 receptor (GLP-1R) is a well-established target for the treatment of type 2 diabetes and GLP-1R agonist-based therapies represent an effective approach which results in several GLP-1 analog drugs. However, the development of nonpeptidic agonist drugs targeting GLP-1R remains unsuccessful. A promising strategy aims to develop orally bioavailable, small-molecule positive allosteric modulators of GLP1-1R. Taking advantage of the recently reported cryo-EM structure of GLP-1R at its active state, we have performed structure-based screening studies which include potential allosteric binding site prediction and in silico screening of drug-like compounds, and conducted in vitro testing and site-specific mutagenesis studies. One compound with low molecular weight was confirmed as a positive allosteric modulator of GLP-1R as it enhances GLP-1's affinity and efficacy to human GLP-1R in a dose dependent manner. This compound also stimulates insulin secretion synergistically with GLP-1. With the molecular weight of 399, this compound represents one of the smallest known GLP-1R PAMs, and demonstrates other favorable drug-like properties. Site-specific mutagenesis studies confirmed that the binding site of this compound partially overlaps with that of a known antagonist in the transmembrane domain. These results demonstrate that structure-based approach is useful for discovering nonpeptidic allosteric modulators of GLP-1R and the compound reported here is valuable for further drug development.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sítio Alostérico/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Desenho de Fármacos , Descoberta de Drogas , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Simulação de Acoplamento Molecular
6.
Nature ; 482(7386): 542-6, 2012 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-22327296

RESUMO

Menin is a tumour suppressor protein whose loss or inactivation causes multiple endocrine neoplasia 1 (MEN1), a hereditary autosomal dominant tumour syndrome that is characterized by tumorigenesis in multiple endocrine organs. Menin interacts with many proteins and is involved in a variety of cellular processes. Menin binds the JUN family transcription factor JUND and inhibits its transcriptional activity. Several MEN1 missense mutations disrupt the menin-JUND interaction, suggesting a correlation between the tumour-suppressor function of menin and its suppression of JUND-activated transcription. Menin also interacts with mixed lineage leukaemia protein 1 (MLL1), a histone H3 lysine 4 methyltransferase, and functions as an oncogenic cofactor to upregulate gene transcription and promote MLL1-fusion-protein-induced leukaemogenesis. A recent report on the tethering of MLL1 to chromatin binding factor lens epithelium-derived growth factor (LEDGF) by menin indicates that menin is a molecular adaptor coordinating the functions of multiple proteins. Despite its importance, how menin interacts with many distinct partners and regulates their functions remains poorly understood. Here we present the crystal structures of human menin in its free form and in complexes with MLL1 or with JUND, or with an MLL1-LEDGF heterodimer. These structures show that menin contains a deep pocket that binds short peptides of MLL1 or JUND in the same manner, but that it can have opposite effects on transcription. The menin-JUND interaction blocks JUN N-terminal kinase (JNK)-mediated JUND phosphorylation and suppresses JUND-induced transcription. In contrast, menin promotes gene transcription by binding the transcription activator MLL1 through the peptide pocket while still interacting with the chromatin-anchoring protein LEDGF at a distinct surface formed by both menin and MLL1.


Assuntos
Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Transcrição Gênica , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cromatina/metabolismo , Cristalografia por Raios X , Fibroblastos , Células HEK293 , Histona-Lisina N-Metiltransferase , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteína de Leucina Linfoide-Mieloide/química , Fosforilação , Ligação Proteica , Multimerização Proteica , Proteínas Proto-Oncogênicas c-jun/química , Relação Estrutura-Atividade
7.
Trends Biochem Sci ; 38(8): 394-402, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23850066

RESUMO

The protein menin is encoded by the MEN1 gene, which is mutated in patients with multiple endocrine neoplasia type 1 (MEN1) syndrome. Although menin acts as a tumor suppressor in endocrine organs, it is required for leukemic transformation in mouse models. Menin possesses these dichotomous functions probably because it can both positively and negatively regulate gene expression, as well as interact with a multitude of proteins with diverse functions. Here, we review the recent progress in understanding the molecular mechanisms by which menin functions. The crystal structures of menin with different binding partners reveal that menin is a key scaffold protein that functionally crosstalks with various partners to regulate gene transcription and interplay with multiple signaling pathways.


Assuntos
Regulação da Expressão Gênica , Modelos Biológicos , Matriz Nuclear/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Animais , Regulação para Baixo , Glândulas Endócrinas/metabolismo , Humanos , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasia Endócrina Múltipla Tipo 1/metabolismo , Mutação , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética
8.
Am J Physiol Endocrinol Metab ; 313(2): E148-E166, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28270438

RESUMO

Menin is a scaffold protein that interacts with several epigenetic mediators to regulate gene transcription, and suppresses pancreatic ß-cell proliferation. Tamoxifen-inducible deletion of multiple endocrine neoplasia type 1 (MEN1) gene, which encodes the protein menin, increases ß-cell mass in multiple murine models of diabetes and ameliorates diabetes. Glucagon-like-peptide-1 (GLP1) is another key physiological modulator of ß-cell mass and glucose homeostasis. However, it is not clearly understood whether menin crosstalks with GLP1 signaling. Here, we show that menin and protein arginine methyltransferase 5 (PRMT5) suppress GLP1 receptor (GLP1R) transcript levels. Notably, a GLP1R agonist induces phosphorylation of forkhead box protein O1 (FOXO1) at S253, and the phosphorylation is mediated by PKA. Interestingly, menin suppresses GLP1-induced and PKA-mediated phosphorylation of both FOXO1 and cAMP response element binding protein (CREB), likely through a protein arginine methyltransferase. Menin-mediated suppression of FOXO1 and CREB phosphorylation increases FOXO1 levels and suppresses CREB target genes, respectively. A small-molecule menin inhibitor reverses menin-mediated suppression of both FOXO1 and CREB phosphorylation. In addition, ex vivo treatment of both mouse and human pancreatic islets with a menin inhibitor increases levels of proliferation marker Ki67. In conclusion, our results suggest that menin and PRMT5 suppress GLP1R transcript levels and PKA-mediated phosphorylation of FOXO1 and CREB, and a menin inhibitor may reverse this suppression to induce ß-cell proliferation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteína Forkhead Box O1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Proteína-Arginina N-Metiltransferases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Células Cultivadas , Regulação para Baixo/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Transdução de Sinais
9.
J Immunol ; 193(3): 1064-70, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24973456

RESUMO

Both commensal bacteria and infiltrating inflammatory cells play essential roles in the pathogenesis of inflammatory bowel disease. The molecular mechanisms whereby these pathogenic factors are regulated during the disease are not fully understood. We report in this article that a member of the TNF-α-induced protein 8 (TNFAIP8) family called TIPE2 (TNFAIP8-like 2) plays a crucial role in regulating commensal bacteria dissemination and inflammatory cell function in experimental colitis induced by dextran sodium sulfate (DSS). Following DSS treatment, TIPE2-deficient mice, or chimeric mice that are deficient in TIPE2 only in their hematopoietic cells, lost less body weight and survived longer than wild-type controls. Consistent with this clinical observation, TIPE2-deficient mice exhibited significantly less severe colitis and colonic damage. This was associated with a marked reduction in the colonic expression of inflammatory cytokines, such as TNF-α, IL-6, and IL-12. Importantly, the ameliorated DSS-induced colitis in TIPE2(-/-) mice also was associated with reduced local dissemination of commensal bacteria and a weaker systemic inflammatory response. Combined with our previous report that TIPE2 is a negative regulator of antibacterial immunity, these results indicate that TIPE2 promotes colitis by inhibiting mucosal immunity to commensal bacteria.


Assuntos
Colite/genética , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Animais , Bactérias/genética , Colite/induzido quimicamente , Colite/patologia , Colo/efeitos dos fármacos , Colo/microbiologia , Colo/patologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/microbiologia , Células-Tronco Hematopoéticas/patologia , Inflamação/imunologia , Inflamação/patologia , Inflamação/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quimera por Radiação , Sulfatos/toxicidade
10.
J Biol Chem ; 289(14): 9902-8, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24563463

RESUMO

Multiple endocrine neoplasia type I (MEN1) is an inherited syndrome that includes susceptibility to pancreatic islet hyperplasia. This syndrome results from mutations in the MEN1 gene, which encodes menin protein. Menin interacts with several transcription factors, including JunD, and inhibits their activities. However, the precise mechanism by which menin suppresses gene expression is not well understood. Here, we show that menin interacts with arsenite-resistant protein 2 (ARS2), a component of the nuclear RNA CAP-binding complex that is crucial for biogenesis of certain miRNAs including let-7a. The levels of primary-let-7a (pri-let-7a) are not affected by menin; however, the levels of mature let-7a are substantially decreased upon Men1 excision. Let-7a targets, including Insr and Irs2, pro-proliferative genes that are crucial for insulin-mediated signaling, are up-regulated in Men1-excised cells. Inhibition of let-7a using anti-miRNA in wild type cells is sufficient to enhance the expression of insulin receptor substrate 2 (IRS2) to levels observed in Men1-excised cells. Depletion of menin does not affect the expression of Drosha and CBP80, but substantially impairs the processing of pri-miRNA to pre-miRNA. Ars2 knockdown decreased let-7a processing in menin-expressing cells but had little impact on let-7a levels in menin-excised cells. As IRS2 is known to mediate insulin signaling and insulin/mitogen-induced cell proliferation, these findings collectively unravel a novel mechanism whereby menin suppresses cell proliferation, at least partly by promoting the processing of certain miRNAs, including let-7a, leading to suppression of Irs2 expression and insulin signaling.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/biossíntese , Neoplasia Endócrina Múltipla Tipo 1/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Processamento Pós-Transcricional do RNA , RNA Neoplásico/biossíntese , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Proliferação de Células , Proteínas de Ligação a DNA , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , MicroRNAs/genética , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasia Endócrina Múltipla Tipo 1/patologia , Proteínas de Neoplasias/genética , Complexo Proteico Nuclear de Ligação ao Cap/genética , Complexo Proteico Nuclear de Ligação ao Cap/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , RNA Neoplásico/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Ribonuclease III/biossíntese , Ribonuclease III/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
J Hepatol ; 61(4): 832-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24845612

RESUMO

BACKGROUND & AIMS: The alterations of histone modification may serve as a promising diagnostic biomarker of hepatocellular carcinoma (HCC), but the clinical and mechanistic relatedness of the histone H3 lysine 27 and 4 trimethylation (H3K27me3 and H3K4me3) in HCC remains poorly understood. Here we propose that the combination of H3K27me3 and H3K4me3 is a more precise predictive/prognostic value for outcome of HCC patients. METHODS: We used chromatin immunoprecipitation (ChIP) assays and a ChIP-on-chip screen to analyse HCC. RESULTS: We found that the EZH2 occupancy coincides with the H3K27me3 at promoters and directly silences the transcription of target genes in HCC. The H3K27me3-related gene network of EZH2 contains well-established genes, such as CDKN2A, as well as previously unappreciated genes, including FOXO3, E2F1, and NOTCH2, among others. We further observed independently increasing profiles of H3K27me3 and H3K4me3 at the promoters of certain target genes in HCC specimens. Importantly, Kaplan-Meier analysis reveals that 3-year overall and tumour-free survival rates are dramatically reduced in patients that simultaneously express EZH2 and menin, compared to rates in the EZH2 or menin under expressing patients. Furthermore, an inhibitor of H3K27me3 alone, or in combination with an H3K4me3 inhibitor, effectively blocked the aggressive phenotype of HCC cells. CONCLUSIONS: Our results indicate that a combined analysis of both H3K27me3 and H3K4me3 may serve as powerful diagnostic biomarkers of HCC, and targeting both might benefit anti-HCC therapy.


Assuntos
Carcinoma Hepatocelular , Histonas , Complexo Repressor Polycomb 2/genética , Proteínas Proto-Oncogênicas/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Histonas/análise , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Metilação , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Processamento de Proteína Pós-Traducional/genética
12.
Bioessays ; 34(9): 771-80, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22829075

RESUMO

Mixed lineage leukemia (MLL) fusion protein (FP)-induced acute leukemia is highly aggressive and often refractory to therapy. Recent progress in the field has unraveled novel mechanisms and targets to combat this disease. Menin, a nuclear protein, interacts with wild-type (WT) MLL, MLL-FPs, and other partners such as the chromatin-associated protein LEDGF and the transcription factor C-Myb to promote leukemogenesis. The newly solved co-crystal structure illustrating the menin-MLL interaction, coupled with the role of menin in recruiting both WT MLL and MLL-FPs to target genes, highlights menin as a scaffold protein and a central hub controlling this type of leukemia. The menin/WT MLL/MLL-FP hub may also cooperate with several signaling pathways, including Wnt, GSK3, and bromodomain-containing Brd4-related pathways to sustain MLL-FP-induced leukemogenesis, revealing new therapeutic targets to improve the treatment of MLL-FP leukemias.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Aguda Bifenotípica/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Acetilação , Proteínas de Ciclo Celular , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Leucemia Aguda Bifenotípica/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Mapeamento de Interação de Proteínas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional , Via de Sinalização Wnt
13.
J Biol Chem ; 287(47): 40003-11, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23027861

RESUMO

MEN1, which encodes the nuclear protein menin, acts as a tumor suppressor in lung cancer and is often inactivated in human primary lung adenocarcinoma. Here, we show that the inactivation of MEN1 is associated with increased DNA methylation at the MEN1 promoter by K-Ras. On one hand, the activated K-Ras up-regulates the expression of DNA methyltransferases and enhances the binding of DNA methyltransferase 1 to the MEN1 promoter, leading to increased DNA methylation at the MEN1 gene in lung cancer cells; on the other hand, menin reduces the level of active Ras-GTP at least partly by preventing GRB2 and SOS1 from binding to Ras, without affecting the expression of GRB2 and SOS1. In human lung adenocarcinoma samples, we further demonstrate that reduced menin expression is associated with the enhanced expression of Ras (p < 0.05). Finally, excision of the Men1 gene markedly accelerates the K-Ras(G12D)-induced tumor formation in the Men1(f/f);K-Ras(G12D/+);Cre ER mouse model. Together, these findings uncover a previously unknown link between activated K-Ras and menin, an important interplay governing tumor activation and suppression in the development of lung cancer.


Assuntos
Adenocarcinoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Proteínas Proto-Oncogênicas/biossíntese , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Mutantes , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteína Oncogênica p21(ras)/genética , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/genética , Proteína SOS1/genética , Proteína SOS1/metabolismo
14.
Haematologica ; 98(6): 918-27, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23349306

RESUMO

Trithorax and polycomb group proteins antagonistically regulate the transcription of many genes, and cancer can result from the disruption of this regulation. Deregulation of trithorax function occurs through chromosomal translocations involving the trithorax gene MLL, leading to the expression of MLL fusion proteins and acute leukemia. It is poorly understood how MLL fusion proteins block differentiation, a hallmark of leukemogenesis. We analyzed the effect of acute depletion of menin, a close partner of MLL that is critical for MLL and MLL-AF9 recruitment to target genes, on MLL-AF9 leukemia cell differentiation using an in vivo model. We performed cDNA microarray analysis of menin-regulated genes from primary leukemia cells to determine menin-regulated pathways involved in suppressing MLL-AF9 leukemia cell differentiation. We found that menin binds the promoter of the polycomb gene Ezh2, and promotes its expression. EZH2 interacts with the differentiation-promoting transcription factor C/EBPα and represses C/EBPα target genes. Menin depletion reduces MLL binding to the Ezh2 locus, EZH2 expression, and EZH2 binding and repressive H3K27 methylation at C/EBPα target genes, thereby inducing the expression of pro-differentiation C/EBPα targets. In conclusion, our results show that in contrast to its classical role antagonizing trithorax function, the polycomb group protein EZH2 collaborates with trithorax-associated menin to block MLL-AF9 leukemia cell differentiation, uncovering a novel mechanism for suppression of C/EBPα and leukemia cell differentiation, through menin-mediated upregulation of EZH2.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Leucemia/genética , Leucemia/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Proteína Potenciadora do Homólogo 2 de Zeste , Regulação Leucêmica da Expressão Gênica , Técnicas de Silenciamento de Genes , Genótipo , Humanos , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Ativação Transcricional
15.
Proc Natl Acad Sci U S A ; 107(47): 20358-63, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21059956

RESUMO

A hallmark of diabetes is an absolute or relative reduction in the number of functional ß cells. Therapies that could increase the number of endogenous ß cells under diabetic conditions would be desirable. Prevalent gene targeting mouse models for assessing ß-cell proliferation and diabetes pathogenesis only address whether deletion of a gene prevents the development of diabetes. Models testing whether acute excision of a single gene can ameliorate or reverse preexisting hyperglycemia in established diabetes remain to be explored, which could directly validate the effect of gene excision on treating diabetes. Here, we report that acute and temporally controlled excision of the Men1 gene, which encodes menin, ameliorated preexisting hyperglycemia in streptozotocin-treated mice. Moreover, Men1 excision also improved the preexisting hyperglycemia and glucose intolerance in genetic db/db diabetic mice. Furthermore, acute Men1 excision reversed preexisting glucose intolerance in high-fat diet-fed mice. Men1 excision improved glucose metabolism at least partly through increasing proliferation of endogenous ß cells and islet size. Acute Men1 excision up-regulated a group of proproliferative genes in pancreatic islets. Together, these findings demonstrate that established hyperglycemia can be reversed through repression of a single gene, Men1, in diabetic conditions, and suggest that menin is a vital regulator in pathogenesis of diabetes.


Assuntos
Diabetes Mellitus Experimental , Deleção de Genes , Regulação da Expressão Gênica/fisiologia , Hiperglicemia/genética , Células Secretoras de Insulina/citologia , Proteínas Proto-Oncogênicas/genética , Animais , Western Blotting , Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Teste de Tolerância a Glucose , Imuno-Histoquímica , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Cancers (Basel) ; 15(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37627154

RESUMO

BACKGROUND AND AIMS: Menin is a nuclear scaffold protein that regulates gene transcription in an oftentimes tissue-specific manner. Our previous work showed that menin is over-expressed in colorectal cancer (CRC); however, the full spectrum of menin function in colonic neoplasia remains unclear. Herein, we aimed to uncover novel menin-regulated pathways important for colorectal carcinogenesis. METHODS: RNA-Seq analysis identified that menin regulates LXR-target gene expressions in CRC cell lines. Isolated colonic epithelium from Men1f/f;Vil1-Cre and Men1f/f mice was used to validate the results in vivo. Cholesterol content was quantified via an enzymatic assay. RESULTS: RNA-Seq analysis in the HT-29 CRC cell line identified that menin inhibition upregulated LXR-target genes, specifically ABCG1 and ABCA1, with protein products that promote cellular cholesterol efflux. Similar results were noted across other CRC cell lines and with different methods of menin inhibition. Consistent with ABCG1 and ABCA1 upregulation, and similarly to LXR agonists, menin inhibition reduced the total cellular cholesterol in both HT-29 and HCT-15 cells. To confirm the effects of menin inhibition in vivo, we assessed Men1f/f;Vil1-Cre mice lacking menin expression in the colonic epithelium. Men1f/f;Vil1-Cre mice were found to have no distinct baseline phenotype compared to control Men1f/f mice. However, similarly to CRC cell lines, Men1f/f;Vil1-Cre mice showed an upregulation of Abcg1 and a reduction in total cellular cholesterol. Promoting cholesterol efflux, either via menin inhibition or LXR activation, was found to synergistically suppress CRC cell growth under cholesterol-depleted conditions and when administered concomitantly with small molecule EGFR inhibitors. CONCLUSIONS: Menin represses the transcription of LXR-target genes, including ABCA1 and ABCG1 in the colonic epithelium and CRC. Menin inhibition conversely upregulates LXR-target genes and reduces total cellular cholesterol, demonstrating that menin inhibition may be an important mechanism for targeting cholesterol-dependent pathways in colorectal carcinogenesis.

17.
J Biol Chem ; 286(16): 13937-44, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21378168

RESUMO

Tumor suppressor menin, the product of the MEN1 gene, plays a key role in controlling histone 3 lysine 4 trimethylation (H3K4me3) and gene transcription, which can regulate proliferation, apoptosis, and differentiation. However, little is known as to whether menin controls gene expression and cell proliferation and survival via regulating Polycomb group (PcG) protein complex/H3K27me3. Here we show that menin specifically represses transcription factor Paired box gene 2 (Pax2) through PcG-mediated H3K27me3 and Wilms tumor suppressor protein (WT1), a zinc finger domain-containing DNA-binding protein. Menin does not directly bind to the Pax2 locus, instead, it up-regulates WT1 expression. WT1 recruits PcG complex to the Pax2 promoter and represses expression of Pax2 through PcG-dependent H3K27me3. Moreover, WT1 also interacts with DNA methyltransferase 1 (DNMT1), and recruits DNMT1 to the Pax2 promoter, resulting in hypermethylation of CpG in the Pax2 promoter. Together, these studies have uncovered a novel epigenetic mechanism whereby menin regulates H3K27me3 and promoter DNA methylation via WT1 and suggest that WT1 protein plays an important, yet previously unappreciated role in regulating the function of the menin/PcG axis, H3K27 methylation, and DNA methylation, resulting in repression of gene transcription.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Animais , Apoptose , Linhagem Celular , Proliferação de Células , Ilhas de CpG , DNA/metabolismo , Camundongos , Camundongos Transgênicos , Fator de Transcrição PAX2/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Transfecção , Proteínas WT1/metabolismo
18.
Chem Biol Drug Des ; 99(6): 857-867, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35313084

RESUMO

We report the discovery of two new 2-aminothiophene based small molecule positive allosteric modulators (PAMs) of glucagon-like peptide 1 receptor (GLP-1R) for the treatment of type 2 diabetes. One of the chemotypes, (S-1), has a molecular weight of 239 g/mol, the smallest molecule among all reported GLP-1R PAMs. When combined with GLP-1 peptide, S-1 increased the GLP-1R activity in a dose-dependent manner in a cell-based assay. When combined with the peptide agonist of vasoactive intestinal polypeptide receptor 1 (VIPR1), S-1 showed no specific activity on VIPR1, another class B GPCR present in the same HEK293-CREB cell line. Insulin secretion studies found S-1 combined with GLP-1 increased insulin secretion by 1.5-fold at 5 µM. In a mechanistic study, evidence is provided that the synergistic effect of S-1 with GLP-1 may be partly due to the enhanced impact on CREB based phosphorylation. Given the favorable profile of these chemotypes, the work reported herein suggests that 2-aminothiophene derivatives are a new and promising class of GLP-1R PAMs.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Regulação Alostérica , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células HEK293 , Humanos , Peptídeos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia
19.
Nat Cancer ; 3(5): 581-594, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35314826

RESUMO

Gastrointestinal cancers (GICs) and neuroendocrine tumors (NETs) are often refractory to therapy after metastasis. Adoptive cell therapy using chimeric antigen receptor (CAR) T cells, though remarkably efficacious for treating leukemia, is yet to be developed for solid tumors such as GICs and NETs. Here we isolated a llama-derived nanobody, VHH1, and found that it bound cell surface adhesion protein CDH17 upregulated in GICs and NETs. VHH1-CAR T cells (CDH17CARTs) killed both human and mouse tumor cells in a CDH17-dependent manner. CDH17CARTs eradicated CDH17-expressing NETs and gastric, pancreatic and colorectal cancers in either tumor xenograft or autochthonous mouse models. Notably, CDH17CARTs do not attack normal intestinal epithelial cells, which also express CDH17, to cause toxicity, likely because CDH17 is localized only at the tight junction between normal intestinal epithelial cells. Thus, CDH17 represents a class of previously unappreciated tumor-associated antigens that is 'masked' in healthy tissues from attack by CAR T cells for developing safer cancer immunotherapy.


Assuntos
Neoplasias Gastrointestinais , Tumores Neuroendócrinos , Receptores de Antígenos Quiméricos , Animais , Neoplasias Gastrointestinais/terapia , Humanos , Camundongos , Tumores Neuroendócrinos/terapia , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Cell Mol Med ; 15(11): 2353-63, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21129151

RESUMO

Substantial genetic evidence suggests that chromosome 11q is involved in regulating initiation and progression of malignant melanomas. Mutations of the MEN1 gene, located in chromosome 11q13, predispose individuals to the multiple endocrine neoplasia type 1 (MEN1) familial syndrome. MEN1 patients develop primary malignant melanoma, suggesting a potential link between MEN1 syndrome and development of melanomas, but the precise molecular mechanism is poorly understood. Here we show that the MEN1 gene suppresses malignant phenotypes of melanoma cells through multiple signalling pathways. Ectopic expression of menin, the product of MEN1 gene, significantly inhibited melanoma cell proliferation and migration in vitro and in vivo. The inhibition was partly achieved through suppressing expression of growth factor pleiotrophin (PTN) and receptor protein tyrosine phosphatase (RPTP) ß/ζ, accompanied with the reduced expression of phosphatidylinositol 3-kinase (pI3K) and decreased phosphorylation of focal adhesion kinase (FAK) and extracellular signal regulated kinase (ERK1/2). Interestingly, reduced expression of menin was associated with hypermethylation of the CpG islands of the MEN1 promoter in melanoma cells. Taken together, these findings suggest a previously unappreciated function for menin in suppressing malignant phenotypes of melanomas and unravel a novel mechanism involving in regulating PTN signalling by menin in development and progression of melanomas.


Assuntos
Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Melanoma Experimental/metabolismo , Melanoma/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/biossíntese , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Imunoprecipitação da Cromatina , Ilhas de CpG/genética , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Melanoma/patologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Fosfatidilinositol 3-Quinase/biossíntese , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Regiões Promotoras Genéticas , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/antagonistas & inibidores , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/biossíntese , Transdução de Sinais , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA