Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Hum Brain Mapp ; 42(7): 1987-2004, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33449442

RESUMO

Combat-related mild traumatic brain injury (cmTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral disabilities in Veterans and active-duty military personnel. Accurate diagnosis of cmTBI is challenging since the symptom spectrum is broad and conventional neuroimaging techniques are insensitive to the underlying neuropathology. The present study developed a novel deep-learning neural network method, 3D-MEGNET, and applied it to resting-state magnetoencephalography (rs-MEG) source-magnitude imaging data from 59 symptomatic cmTBI individuals and 42 combat-deployed healthy controls (HCs). Analytic models of individual frequency bands and all bands together were tested. The All-frequency model, which combined delta-theta (1-7 Hz), alpha (8-12 Hz), beta (15-30 Hz), and gamma (30-80 Hz) frequency bands, outperformed models based on individual bands. The optimized 3D-MEGNET method distinguished cmTBI individuals from HCs with excellent sensitivity (99.9 ± 0.38%) and specificity (98.9 ± 1.54%). Receiver-operator-characteristic curve analysis showed that diagnostic accuracy was 0.99. The gamma and delta-theta band models outperformed alpha and beta band models. Among cmTBI individuals, but not controls, hyper delta-theta and gamma-band activity correlated with lower performance on neuropsychological tests, whereas hypo alpha and beta-band activity also correlated with lower neuropsychological test performance. This study provides an integrated framework for condensing large source-imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI. The all-frequency model offered more discriminative power than each frequency-band model alone. This approach offers an effective path for optimal characterization of behaviorally relevant neuroimaging features in neurological and psychiatric disorders.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/fisiopatologia , Distúrbios de Guerra/diagnóstico por imagem , Distúrbios de Guerra/fisiopatologia , Conectoma/normas , Aprendizado Profundo , Magnetoencefalografia/normas , Adulto , Conectoma/métodos , Humanos , Magnetoencefalografia/métodos , Masculino , Sensibilidade e Especificidade , Adulto Jovem
2.
Cereb Cortex ; 30(1): 283-295, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31041986

RESUMO

Combat-related mild traumatic brain injury (mTBI) is a leading cause of sustained impairments in military service members and veterans. Recent animal studies show that GABA-ergic parvalbumin-positive interneurons are susceptible to brain injury, with damage causing abnormal increases in spontaneous gamma-band (30-80 Hz) activity. We investigated spontaneous gamma activity in individuals with mTBI using high-resolution resting-state magnetoencephalography source imaging. Participants included 25 symptomatic individuals with chronic combat-related blast mTBI and 35 healthy controls with similar combat experiences. Compared with controls, gamma activity was markedly elevated in mTBI participants throughout frontal, parietal, temporal, and occipital cortices, whereas gamma activity was reduced in ventromedial prefrontal cortex. Across groups, greater gamma activity correlated with poorer performances on tests of executive functioning and visuospatial processing. Many neurocognitive associations, however, were partly driven by the higher incidence of mTBI participants with both higher gamma activity and poorer cognition, suggesting that expansive upregulation of gamma has negative repercussions for cognition particularly in mTBI. This is the first human study to demonstrate abnormal resting-state gamma activity in mTBI. These novel findings suggest the possibility that abnormal gamma activities may be a proxy for GABA-ergic interneuron dysfunction and a promising neuroimaging marker of insidious mild head injuries.


Assuntos
Concussão Encefálica/fisiopatologia , Encéfalo/fisiopatologia , Ritmo Gama , Adulto , Concussão Encefálica/psicologia , Humanos , Magnetoencefalografia , Masculino , Vias Neurais , Testes Neuropsicológicos , Guerra
3.
Cereb Cortex ; 29(5): 1953-1968, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668852

RESUMO

Combat-related mild traumatic brain injury (mTBI) is a leading cause of sustained cognitive impairment in military service members and Veterans. However, the mechanism of persistent cognitive deficits including working memory (WM) dysfunction is not fully understood in mTBI. Few studies of WM deficits in mTBI have taken advantage of the temporal and frequency resolution afforded by electromagnetic measurements. Using magnetoencephalography (MEG) and an N-back WM task, we investigated functional abnormalities in combat-related mTBI. Study participants included 25 symptomatic active-duty service members or Veterans with combat-related mTBI and 20 healthy controls with similar combat experiences. MEG source-magnitude images were obtained for alpha (8-12 Hz), beta (15-30 Hz), gamma (30-90 Hz), and low-frequency (1-7 Hz) bands. Compared with healthy combat controls, mTBI participants showed increased MEG signals across frequency bands in frontal pole (FP), ventromedial prefrontal cortex, orbitofrontal cortex (OFC), and anterior dorsolateral prefrontal cortex (dlPFC), but decreased MEG signals in anterior cingulate cortex. Hyperactivations in FP, OFC, and anterior dlPFC were associated with slower reaction times. MEG activations in lateral FP also negatively correlated with performance on tests of letter sequencing, verbal fluency, and digit symbol coding. The profound hyperactivations from FP suggest that FP is particularly vulnerable to combat-related mTBI.


Assuntos
Concussão Encefálica/fisiopatologia , Concussão Encefálica/psicologia , Encéfalo/fisiopatologia , Distúrbios de Guerra/patologia , Distúrbios de Guerra/fisiopatologia , Memória de Curto Prazo/fisiologia , Adulto , Concussão Encefálica/etiologia , Ondas Encefálicas , Distúrbios de Guerra/complicações , Humanos , Magnetoencefalografia , Masculino , Testes Neuropsicológicos , Veteranos
4.
Brain Inj ; 31(13-14): 1951-1963, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28925734

RESUMO

BACKGROUND: Mild traumatic brain injury (mTBI) is a leading cause of sustained impairments in military service members, Veterans, and civilians. However, few treatments are available for mTBI, partially because the mechanism of persistent mTBI deficits is not fully understood. METHODS: We used magnetoencephalography (MEG) to investigate neuronal changes in individuals with mTBI following a passive neurofeedback-based treatment programme called IASIS. This programme involved applying low-intensity pulses using transcranial electrical stimulation (LIP-tES) with electroencephalography monitoring. Study participants included six individuals with mTBI and persistent post-concussive symptoms (PCS). MEG exams were performed at baseline and follow-up to evaluate the effect of IASIS on brain functioning. RESULTS: At the baseline MEG exam, all participants had abnormal slow-waves. In the follow-up MEG exam, the participants showed significantly reduced abnormal slow-waves with an average reduction of 53.6 ± 24.6% in slow-wave total score. The participants also showed significant reduction of PCS scores after IASIS treatment, with an average reduction of 52.76 ± 26.4% in PCS total score. CONCLUSIONS: The present study demonstrates, for the first time, the neuroimaging-based documentation of the effect of LIP-tES treatment on brain functioning in mTBI. The mechanisms of LIP-tES treatment are discussed, with an emphasis on LIP-tES's potentiation of the mTBI healing process.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/terapia , Imageamento por Ressonância Magnética , Magnetoencefalografia , Estimulação Transcraniana por Corrente Contínua , Adulto , Eletroencefalografia , Feminino , Análise de Fourier , Humanos , Masculino , Testes Neuropsicológicos , Projetos Piloto , Síndrome Pós-Concussão/diagnóstico , Inquéritos e Questionários , Veteranos
5.
Neuroimage ; 84: 585-604, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24055704

RESUMO

The present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were obtained for the dominant spatial modes of sensor-waveform covariance matrix. Next, accurate source time-courses with millisecond temporal resolution were obtained using an inverse operator constructed from the spatial source images of Step 1. Using simulations, Fast-VESTAL's performance was assessed for its 1) ability to localize multiple correlated sources; 2) ability to faithfully recover source time-courses; 3) robustness to different SNR conditions including SNR with negative dB levels; 4) capability to handle correlated brain noise; and 5) statistical maps of MEG source images. An objective pre-whitening method was also developed and integrated with Fast-VESTAL to remove correlated brain noise. Fast-VESTAL's performance was then examined in the analysis of human median-nerve MEG responses. The results demonstrated that this method easily distinguished sources in the entire somatosensory network. Next, Fast-VESTAL was applied to obtain the first whole-head MEG source-amplitude images from resting-state signals in 41 healthy control subjects, for all standard frequency bands. Comparisons between resting-state MEG sources images and known neurophysiology were provided. Additionally, in simulations and cases with MEG human responses, the results obtained from using conventional beamformer technique were compared with those from Fast-VESTAL, which highlighted the beamformer's problems of signal leaking and distorted source time-courses.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Magnetoencefalografia/métodos , Processamento de Sinais Assistido por Computador , Adulto , Algoritmos , Feminino , Humanos , Masculino , Descanso/fisiologia , Razão Sinal-Ruído
6.
J Neurotrauma ; 40(11-12): 1112-1129, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36884305

RESUMO

The objectives of this machine-learning (ML) resting-state magnetoencephalography (rs-MEG) study involving children with mild traumatic brain injury (mTBI) and orthopedic injury (OI) controls were to define a neural injury signature of mTBI and to delineate the pattern(s) of neural injury that determine behavioral recovery. Children ages 8-15 years with mTBI (n = 59) and OI (n = 39) from consecutive admissions to an emergency department were studied prospectively for parent-rated post-concussion symptoms (PCS) at: 1) baseline (average of 3 weeks post-injury) to measure pre-injury symptoms and also concurrent symptoms; and 2) at 3-months post-injury. rs-MEG was conducted at the baseline assessment. The ML algorithm predicted cases of mTBI versus OI with sensitivity of 95.5 ± 1.6% and specificity of 90.2 ± 2.7% at 3-weeks post-injury for the combined delta-gamma frequencies. The sensitivity and specificity were significantly better (p < 0.0001) for the combined delta-gamma frequencies compared with the delta-only and gamma-only frequencies. There were also spatial differences in rs-MEG activity between mTBI and OI groups in both delta and gamma bands in frontal and temporal lobe, as well as more widespread differences in the brain. The ML algorithm accounted for 84.5% of the variance in predicting recovery measured by PCS changes between 3 weeks and 3 months post-injury in the mTBI group, and this was significantly lower (p < 10-4) in the OI group (65.6%). Frontal lobe pole (higher) gamma activity was significantly (p < 0.001) associated with (worse) PCS recovery exclusively in the mTBI group. These findings demonstrate a neural injury signature of pediatric mTBI and patterns of mTBI-induced neural injury related to behavioral recovery.


Assuntos
Concussão Encefálica , Lesões Encefálicas , Síndrome Pós-Concussão , Humanos , Criança , Concussão Encefálica/diagnóstico , Concussão Encefálica/complicações , Magnetoencefalografia/métodos , Encéfalo , Síndrome Pós-Concussão/diagnóstico , Lesões Encefálicas/complicações
7.
medRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425691

RESUMO

Magnetoencephalography (MEG) is a non-invasive functional imaging technique for pre-surgical mapping. However, movement-related MEG functional mapping of primary motor cortex (M1) has been challenging in presurgical patients with brain lesions and sensorimotor dysfunction due to the large numbers of trails needed to obtain adequate signal to noise. Moreover, it is not fully understood how effective the brain communication is with the muscles at frequencies above the movement frequency and its harmonics. We developed a novel Electromyography (EMG)-projected MEG source imaging technique for localizing M1 during ~1 minute recordings of left and right self-paced finger movements (~1 Hz). High-resolution MEG source images were obtained by projecting M1 activity towards the skin EMG signal without trial averaging. We studied delta (1-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (15-30 Hz), and gamma (30-90 Hz) bands in 13 healthy participants (26 datasets) and two presurgical patients with sensorimotor dysfunction. In healthy participants, EMG-projected MEG accurately localized M1 with high accuracy in delta (100.0%), theta (100.0%), and beta (76.9%) bands, but not alpha (34.6%) and gamma (0.0%) bands. Except for delta, all other frequency bands were above the movement frequency and its harmonics. In both presurgical patients, M1 activity in the affected hemisphere was also accurately localized, despite highly irregular EMG movement patterns in one patient. Altogether, our EMG-projected MEG imaging approach is highly accurate and feasible for M1 mapping in presurgical patients. The results also provide insight into movement related brain-muscle coupling above the movement frequency and its harmonics.

8.
J Neurotrauma ; 37(7): 994-1001, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31724480

RESUMO

Mild traumatic brain injury (mTBI) accounts for the vast majority of all pediatric TBI. An important minority of children who have suffered an mTBI have enduring cognitive and emotional symptoms. However, the mechanisms of chronic symptoms in children with pediatric mTBI are not fully understood. This is in part due to the limited sensitivity of conventional neuroimaging technologies. The present study examined resting-state magnetoencephalography (rs-MEG) source images in 12 children who had mTBI and 12 age-matched control children. The rs-MEG exams were performed in children with mTBI 6 months after injury when they reported no clinically significant post-injury psychiatric changes and few if any somatic sensorimotor symptoms but did report cognitive symptoms. MEG source magnitude images were obtained for different frequency bands in alpha (8-12 Hz), beta (15-30 Hz), gamma (30-90 Hz), and low-frequency (1-7 Hz) bands. In contrast to the control participants, rs-MEG source imaging in the children with mTBI showed: 1) hyperactivity from the bilateral insular cortices in alpha, beta, and low-frequency bands, from the left amygdala in alpha band, and from the left precuneus in beta band; 2) hypoactivity from the bilateral dorsolateral prefrontal cortices (dlPFC) in alpha and beta bands, from the ventromedial prefrontal cortex (vmPFC) in beta band, from the ventrolateral prefrontal cortex (vlPFC) in gamma band, from the anterior cingulate cortex (ACC) in alpha band, and from the right precuneus in alpha band. The present study showed that MEG source imaging technique revealed abnormalities in the resting-state electromagnetic signals from the children with mTBI.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/fisiopatologia , Magnetoencefalografia/métodos , Descanso , Adolescente , Criança , Feminino , Humanos , Magnetoencefalografia/normas , Masculino , Projetos Piloto , Descanso/fisiologia
9.
J Neurotrauma ; 34(7): 1412-1426, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27762653

RESUMO

Blast mild traumatic brain injury (mTBI) is a leading cause of sustained impairment in military service members and veterans. However, the mechanism of persistent disability is not fully understood. The present study investigated disturbances in brain functioning in mTBI participants using a source-imaging-based approach to analyze functional connectivity (FC) from resting-state magnetoencephalography (rs-MEG). Study participants included 26 active-duty service members or veterans who had blast mTBI with persistent post-concussive symptoms, and 22 healthy control active-duty service members or veterans. The source time courses from regions of interest (ROIs) were used to compute ROI to whole-brain (ROI-global) FC for different frequency bands using two different measures: 1) time-lagged cross-correlation and 2) phase-lock synchrony. Compared with the controls, blast mTBI participants showed increased ROI-global FC in beta, gamma, and low-frequency bands, but not in the alpha band. Sources of abnormally increased FC included the: 1) prefrontal cortex (right ventromedial prefrontal cortex [vmPFC], right rostral anterior cingulate cortex [rACC]), and left ventrolateral and dorsolateral prefrontal cortex; 2) medial temporal lobe (bilateral parahippocampus, hippocampus, and amygdala); and 3) right putamen and cerebellum. In contrast, the blast mTBI group also showed decreased FC of the right frontal pole. Group differences were highly consistent across the two different FC measures. FC of the left ventrolateral prefrontal cortex correlated with executive functioning and processing speed in mTBI participants. Altogether, our findings of increased and decreased regionalpatterns of FC suggest that disturbances in intrinsic brain connectivity may be the result of multiple mechanisms, and are associated with cognitive sequelae of the injury.


Assuntos
Concussão Encefálica/fisiopatologia , Ondas Encefálicas/fisiologia , Cerebelo/fisiopatologia , Córtex Cerebral/fisiopatologia , Conectoma/métodos , Magnetoencefalografia/métodos , Militares , Putamen/fisiopatologia , Veteranos , Adulto , Tonsila do Cerebelo/fisiopatologia , Traumatismos por Explosões/complicações , Concussão Encefálica/etiologia , Função Executiva/fisiologia , Humanos , Masculino , Giro Para-Hipocampal/fisiopatologia , Síndrome Pós-Concussão/etiologia , Síndrome Pós-Concussão/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Desempenho Psicomotor/fisiologia , Estados Unidos , Adulto Jovem
10.
Phys Med Biol ; 62(3): 734-757, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28072579

RESUMO

Superparamagnetic relaxometry (SPMR) is a highly sensitive technique for the in vivo detection of tumor cells and may improve early stage detection of cancers. SPMR employs superparamagnetic iron oxide nanoparticles (SPION). After a brief magnetizing pulse is used to align the SPION, SPMR measures the time decay of SPION using super-conducting quantum interference device (SQUID) sensors. Substantial research has been carried out in developing the SQUID hardware and in improving the properties of the SPION. However, little research has been done in the pre-processing of sensor signals and post-processing source modeling in SPMR. In the present study, we illustrate new pre-processing tools that were developed to: (1) remove trials contaminated with artifacts, (2) evaluate and ensure that a single decay process associated with bounded SPION exists in the data, (3) automatically detect and correct flux jumps, and (4) accurately fit the sensor signals with different decay models. Furthermore, we developed an automated approach based on multi-start dipole imaging technique to obtain the locations and magnitudes of multiple magnetic sources, without initial guesses from the users. A regularization process was implemented to solve the ambiguity issue related to the SPMR source variables. A procedure based on reduced chi-square cost-function was introduced to objectively obtain the adequate number of dipoles that describe the data. The new pre-processing tools and multi-start source imaging approach have been successfully evaluated using phantom data. In conclusion, these tools and multi-start source modeling approach substantially enhance the accuracy and sensitivity in detecting and localizing sources from the SPMR signals. Furthermore, multi-start approach with regularization provided robust and accurate solutions for a poor SNR condition similar to the SPMR detection sensitivity in the order of 1000 cells. We believe such algorithms will help establishing the industrial standards for SPMR when applying the technique in pre-clinical and clinical settings.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética/instrumentação , Nanopartículas de Magnetita , Imagem Molecular/métodos , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador/instrumentação , Humanos
11.
Clin Neurophysiol ; 127(5): 2308-16, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27072104

RESUMO

OBJECTIVE: Localizing expressive language function has been challenging using the conventional magnetoencephalography (MEG) source modeling methods. The present MEG study presents a new accurate and precise approach in localizing the language areas using a high-resolution MEG source imaging method. METHODS: In 32 patients with brain tumors and/or epilepsies, an object-naming task was used to evoke MEG responses. Our Fast-VESTAL source imaging method was then applied to the MEG data in order to localize the brain areas evoked by the object-naming task. RESULTS: The Fast-VESTAL results showed that Broca's area was accurately localized to the pars opercularis (BA 44) and/or the pars triangularis (BA 45) in all patients. Fast-VESTAL also accurately localized Wernicke's area to the posterior aspect of the superior temporal gyri in BA 22, as well as several additional brain areas. Furthermore, we found that the latency of the main peak of the response in Wernicke's area was significantly earlier than that of Broca's area. CONCLUSION: In all patients, Fast-VESTAL analysis established accurate and precise localizations of Broca's area, as well as other language areas. The responses in Wernicke's area were also shown to significantly precede those of Broca's area. SIGNIFICANCE: The present study demonstrates that using Fast-VESTAL, MEG can serve as an accurate and reliable functional imaging tool for presurgical mapping of language functions in patients with brain tumors and/or epilepsies.


Assuntos
Mapeamento Encefálico/métodos , Área de Broca/fisiopatologia , Magnetoencefalografia/métodos , Adulto , Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/cirurgia , Área de Broca/cirurgia , Epilepsia/fisiopatologia , Epilepsia/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lobo Temporal/fisiopatologia , Lobo Temporal/cirurgia , Adulto Jovem
12.
Neuroimage Clin ; 5: 408-19, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25180160

RESUMO

Post-traumatic stress disorder (PTSD) is a leading cause of sustained impairment, distress, and poor quality of life in military personnel, veterans, and civilians. Indirect functional neuroimaging studies using PET or fMRI with fear-related stimuli support a PTSD neurocircuitry model that includes amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC). However, it is not clear if this model can fully account for PTSD abnormalities detected directly by electromagnetic-based source imaging techniques in resting-state. The present study examined resting-state magnetoencephalography (MEG) signals in 25 active-duty service members and veterans with PTSD and 30 healthy volunteers. In contrast to the healthy volunteers, individuals with PTSD showed: (1) hyperactivity from amygdala, hippocampus, posterolateral orbitofrontal cortex (OFC), dorsomedial prefrontal cortex (dmPFC), and insular cortex in high-frequency (i.e., beta, gamma, and high-gamma) bands; (2) hypoactivity from vmPFC, Frontal Pole (FP), and dorsolateral prefrontal cortex (dlPFC) in high-frequency bands; (3) extensive hypoactivity from dlPFC, FP, anterior temporal lobes, precuneous cortex, and sensorimotor cortex in alpha and low-frequency bands; and (4) in individuals with PTSD, MEG activity in the left amygdala and posterolateral OFC correlated positively with PTSD symptom scores, whereas MEG activity in vmPFC and precuneous correlated negatively with symptom score. The present study showed that MEG source imaging technique revealed new abnormalities in the resting-state electromagnetic signals from the PTSD neurocircuitry. Particularly, posterolateral OFC and precuneous may play important roles in the PTSD neurocircuitry model.


Assuntos
Magnetoencefalografia/métodos , Vias Neurais/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Militares , Descanso , Processamento de Sinais Assistido por Computador , Veteranos
13.
Neuroimage Clin ; 5: 109-19, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009772

RESUMO

Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI) can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1-4 Hz) that can be measured and localized by resting-state magnetoencephalography (MEG). In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1-4 Hz) from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes), our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes), blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI.


Assuntos
Traumatismos por Explosões/complicações , Lesões Encefálicas/diagnóstico , Traumatismos Craniocerebrais/complicações , Síndrome Pós-Concussão/diagnóstico , Acidentes de Trânsito , Adulto , Traumatismos por Explosões/fisiopatologia , Lesões Encefálicas/etiologia , Lesões Encefálicas/fisiopatologia , Traumatismos Craniocerebrais/fisiopatologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Magnetoencefalografia , Masculino , Testes Neuropsicológicos , Síndrome Pós-Concussão/etiologia , Síndrome Pós-Concussão/fisiopatologia , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA