RESUMO
Hydrogen embrittlement jeopardizes the use of high-strength steels in critical load-bearing applications. However, uncertainty regarding how hydrogen affects dislocation motion, owing to the lack of quantitative experimental evidence, hinders our understanding of hydrogen embrittlement. Here, by studying the well-controlled, cyclic, bow-out motions of individual screw dislocations in α-iron, we find that the critical stress for initiating dislocation motion in a 2 Pa electron-beam-excited H2 atmosphere is 27-43% lower than that in a vacuum environment, proving that hydrogen enhances screw dislocation motion. Moreover, we find that aside from vacuum degassing, cyclic loading and unloading facilitates the de-trapping of hydrogen, allowing the dislocation to regain its hydrogen-free behaviour. These findings at the individual dislocation level can inform hydrogen embrittlement modelling and guide the design of hydrogen-resistant steels.
RESUMO
Continuous monitoring of blood pressure (BP) and multiparametric analysis of cardiac functions are crucial for the early diagnosis and therapy of cardiovascular diseases. However, existing monitoring approaches often suffer from bulky and intrusive apparatus, cumbersome testing procedures, and challenging data processing, hampering their applications in continuous monitoring. Here, a heterogeneously hierarchical piezoelectric composite is introduced for wearable continuous BP and cardiac function monitoring, overcoming the rigidity of ceramic and the insensitivity of polymer. By optimizing the hierarchical structure and components of the composite, the developed piezoelectric sensor delivers impressive performances, ensuring continuous and accurate monitoring of BP at Grade A level. Furthermore, the hemodynamic parameters are extracted from the detected signals, such as local pulse wave velocity, cardiac output, and stroke volume, all of which are in alignment with clinical results. Finally, the all-day tracking of cardiac function parameters validates the reliability and stability of the developed sensor, highlighting its potential for personalized healthcare systems, particularly in early diagnosis and timely intervention of cardiovascular disease.
Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Pressão Sanguínea , Análise de Onda de Pulso/instrumentação , Doenças Cardiovasculares/diagnóstico , HemodinâmicaRESUMO
E-skins, capable of responding to mechanical stimuli, hold significant potential in the field of robot haptics. However, it is a challenge to obtain e-skins with both high sensitivity and mechanical stability. Here, we present a bioinspired piezoresistive sensor with hierarchical structures based on polyaniline/polystyrene core-shell nanoparticles polymerized on air-laid paper. The combination of laser-etched reusable templates and sensitive materials that can be rapidly synthesized enables large-scale production. Benefiting from the substantially enlarged deformation of the hierarchical structure, the developed piezoresistive electronics exhibit a decent sensitivity of 21.67 kPa-1 and a subtle detection limit of 3.4 Pa. Moreover, an isolation layer is introduced to enhance the interface stability of the e-skin, with a fracture limit of 66.34 N/m. Furthermore, the e-skin can be seamlessly integrated onto gloves without any detachment issues. With the assistance of deep learning, it achieves a 98% accuracy rate in object recognition. We anticipate that this strategy will render e-skin with more robust interfaces and heightened sensing capabilities, offering a favorable pathway for large-scale production.
RESUMO
In the absence of externally applied mechanical loading, it would seem counterintuitive that a solid particle sitting on the surface of another solid could not only sink into the latter, but also continue its rigid-body motion towards the interior, reaching a depth as distant as thousands of times the particle diameter. Here, we demonstrate such a case using in situ microscopic as well as bulk experiments, in which diamond nanoparticles ~100 nm in size move into iron up to millimeter depth, at a temperature about half of the melting point of iron. Each diamond nanoparticle is nudged as a whole, in a displacive motion towards the iron interior, due to a local stress induced by the accumulation of iron atoms diffusing around the particle via a short and easy interfacial channel. Our discovery underscores an unusual mass transport mode in solids, in addition to the familiar diffusion of individual atoms.
RESUMO
Coherent twin boundaries (CTBs) are internal interfaces that can play a key role in markedly enhancing the strength of metallic materials while preserving their ductility. They are known to accommodate plastic deformation primarily through their migration, while experimental evidence documenting large-scale sliding of CTBs to facilitate deformation has thus far not been reported. We show here that CTB sliding is possible whenever the loading orientation enables the Schmid factors of leading and trailing partial dislocations to be comparable to each other. This theoretical prediction is confirmed by real-time transmission electron microscope experimental observations during uniaxial deformation of copper pillars with different orientations and is further validated at the atomic scale by recourse to molecular dynamics simulations. Our findings provide mechanistic insights into the evolution of plasticity in heavily twinned face-centered cubic metals, with the potential for optimizing mechanical properties with nanoscale CTBs in material design.