RESUMO
Medicinal plants have garnered significant attention in ethnomedicine and traditional medicine due to their potential antitumor, anti-inflammatory and antioxidant properties. Recent advancements in genome sequencing and synthetic biology have revitalized interest in natural products. Despite the availability of sequenced genomes and transcriptomes of these plants, the absence of publicly accessible gene annotations and tabular formatted gene expression data has hindered their effective utilization. To address this pressing issue, we have developed IMP (Integrated Medicinal Plantomics), a freely accessible platform at https://www.bic.ac.cn/IMP. IMP curated a total of 8 565 672 genes for 84 high-quality genome assemblies, and 2156 transcriptome sequencing samples encompassing various organs, tissues, developmental stages and stimulations. With the integrated 10 analysis modules, users could simply examine gene annotations, sequences, functions, distributions and expressions in IMP in a one-stop mode. We firmly believe that IMP will play a vital role in enhancing the understanding of molecular metabolic pathways in medicinal plants or plants with medicinal benefits, thereby driving advancements in synthetic biology, and facilitating the exploration of natural sources for valuable chemical constituents like drug discovery and drug production.
Assuntos
Plantas Medicinais , Software , Transcriptoma , Mapeamento Cromossômico , Genômica , Anotação de Sequência Molecular , Plantas Medicinais/genética , Plantas Medicinais/químicaRESUMO
The coronavirus disease 2019 (COVID-19) pandemic is an ongoing global health concern, and effective antiviral reagents are urgently needed. Traditional Chinese medicine theory-driven natural drug research and development (TCMT-NDRD) is a feasible method to address this issue as the traditional Chinese medicine formulae have been shown effective in the treatment of COVID-19. Huashi Baidu decoction (Q-14) is a clinically approved formula for COVID-19 therapy with antiviral and anti-inflammatory effects. Here, an integrative pharmacological strategy was applied to identify the antiviral and anti-inflammatory bioactive compounds from Q-14. Overall, a total of 343 chemical compounds were initially characterized, and 60 prototype compounds in Q-14 were subsequently traced in plasma using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Among the 60 compounds, six compounds (magnolol, glycyrrhisoflavone, licoisoflavone A, emodin, echinatin, and quercetin) were identified showing a dose-dependent inhibition effect on the SARS-CoV-2 infection, including two inhibitors (echinatin and quercetin) of the main protease (Mpro), as well as two inhibitors (glycyrrhisoflavone and licoisoflavone A) of the RNA-dependent RNA polymerase (RdRp). Meanwhile, three anti-inflammatory components, including licochalcone B, echinatin, and glycyrrhisoflavone, were identified in a SARS-CoV-2-infected inflammatory cell model. In addition, glycyrrhisoflavone and licoisoflavone A also displayed strong inhibitory activities against cAMP-specific 3',5'-cyclic phosphodiesterase 4 (PDE4). Crystal structures of PDE4 in complex with glycyrrhisoflavone or licoisoflavone A were determined at resolutions of 1.54 Å and 1.65 Å, respectively, and both compounds bind in the active site of PDE4 with similar interactions. These findings will greatly stimulate the study of TCMT-NDRD against COVID-19.
Assuntos
COVID-19 , Humanos , Antivirais/farmacologia , SARS-CoV-2 , Quercetina/farmacologia , Anti-Inflamatórios/farmacologia , Simulação de Acoplamento MolecularRESUMO
Medicinal plants are the main source of natural metabolites with specialised pharmacological activities and have been widely examined by plant researchers. Numerous omics studies of medicinal plants have been performed to identify molecular markers of species and functional genes controlling key biological traits, as well as to understand biosynthetic pathways of bioactive metabolites and the regulatory mechanisms of environmental responses. Omics technologies have been widely applied to medicinal plants, including as taxonomics, transcriptomics, metabolomics, proteomics, genomics, pangenomics, epigenomics and mutagenomics. However, because of the complex biological regulation network, single omics usually fail to explain the specific biological phenomena. In recent years, reports of integrated multi-omics studies of medicinal plants have increased. Until now, there have few assessments of recent developments and upcoming trends in omics studies of medicinal plants. We highlight recent developments in omics research of medicinal plants, summarise the typical bioinformatics resources available for analysing omics datasets, and discuss related future directions and challenges. This information facilitates further studies of medicinal plants, refinement of current approaches and leads to new ideas.
Assuntos
Plantas Medicinais , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Multiômica , Genômica , Proteômica , Biologia Computacional , MetabolômicaRESUMO
Anthraquinones (AQs) constitute the largest group of natural quinones, which are used as safe natural dyes and have many pharmaceutical applications. In plants, AQs are biosynthesized through two main routes: the polyketide pathway and the shikimate pathway. The latter primarily forms alizarin-type AQs, and the prenylation of 1,4-dihydroxy-2-naphthoic acid (DHNA) is the first pathway-specific step. However, the prenyltransferase (PT) responsible for this key step remains uncharacterized. In this study, the cell suspension culture of Madder (Rubia cordifolia), a plant rich in alizarin-type AQs, was discovered to be capable of prenylating DHNA to form 2-carboxyl-3-prenyl-1,4-naphthoquinone and 3-prenyl-1,4-naphthoquinone. Then, a candidate gene belonging to the UbiA superfamily, R. cordifoliadimethylallyltransferase 1 (RcDT1), was shown to account for the prenylation activity. Substrate specificity studies revealed that the recombinant RcDT1 recognized naphthoic acids primarily, followed by 4-hydroxyl benzoic acids. The prenylation activity was strongly inhibited by 1,2- and 1,4-dihydroxynaphthalene. RcDT1 RNA interference significantly reduced the AQs content in R. cordifolia callus cultures, demonstrating that RcDT1 is required for alizarin-type AQs biosynthesis. The plastid localization and root-specific expression further confirmed the participation of RcDT1 in anthraquinone biosynthesis. The phylogenetic analyses of RcDT1 and functional validation of its rubiaceous homologs indicated that DHNA-prenylation activity evolved convergently in Rubiaceae via recruitment from the ubiquinone biosynthetic pathway. Our results demonstrate that RcDT1 catalyzes the first pathway-specific step of alizarin-type AQs biosynthesis in R. cordifolia. These findings will have profound implications for understanding the biosynthetic process of the anthraquinone ring derived from the shikimate pathway.
Assuntos
Antraquinonas , Dimetilaliltranstransferase , Rubia , Antraquinonas/metabolismo , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/genética , Rubia/metabolismo , Rubia/genética , Rubia/enzimologia , Especificidade por Substrato , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Naftóis/metabolismo , Naftoquinonas/metabolismo , Prenilação , Regulação da Expressão Gênica de PlantasRESUMO
Benzylisoquinoline alkaloids (BIAs) represent a significant class of secondary metabolites with crucial roles in plant physiology and substantial potential for clinical applications. CYP82 genes are involved in the formation and modification of various BIA skeletons, contributing to the structural diversity of compounds. In this study, Corydalis yanhusuo, a traditional Chinese medicine rich in BIAs, was investigated to identify the catalytic function of CYP82s during BIA formation. Specifically, 20 CyCYP82-encoding genes were cloned, and their functions were identified in vitro. Ten of these CyCYP82s were observed to catalyze hydroxylation, leading to the formation of protopine and benzophenanthridine scaffolds. Furthermore, the correlation between BIA accumulation and the expression of CyCYP82s in different tissues of C. yanhusuo was assessed their. The identification and characterization of CyCYP82s provide novel genetic elements that can advance the synthetic biology of BIA compounds such as protopine and benzophenanthridine, and offer insights into the biosynthesis of BIAs with diverse structures in C. yanhusuo.
Assuntos
Alcaloides , Benzilisoquinolinas , Corydalis , Benzofenantridinas , Corydalis/genética , Corydalis/química , Corydalis/metabolismo , Alcaloides/metabolismo , Extratos Vegetais/químicaRESUMO
BACKGROUND: Obtaining high-quality chloroplast genome sequences requires chloroplast DNA (cpDNA) samples that meet the sequencing requirements. The quality of extracted cpDNA directly impacts the efficiency and accuracy of sequencing analysis. Currently, there are no reported methods for extracting cpDNA from Erigeron breviscapus. Therefore, we developed a suitable method for extracting cpDNA from E. breviscapus and further verified its applicability to other medicinal plants. RESULTS: We conducted a comparative analysis of chloroplast isolation and cpDNA extraction using modified high-salt low-pH method, the high-salt method, and the NaOH low-salt method, respectively. Subsequently, the number of cpDNA copies relative to the nuclear DNA (nDNA ) was quantified via qPCR. As anticipated, chloroplasts isolated from E. breviscapus using the modified high-salt low-pH method exhibited intact structures with minimal cell debris. Moreover, the concentration, purity, and quality of E. breviscapus cpDNA extracted through this method surpassed those obtained from the other two methods. Furthermore, qPCR analysis confirmed that the modified high-salt low-pH method effectively minimized nDNA contamination in the extracted cpDNA. We then applied the developed modified high-salt low-pH method to other medicinal plant species, including Mentha haplocalyx, Taraxacum mongolicum, and Portulaca oleracea. The resultant effect on chloroplast isolation and cpDNA extraction further validated the generalizability and efficacy of this method across different plant species. CONCLUSIONS: The modified high-salt low-pH method represents a reliable approach for obtaining high-quality cpDNA from E. breviscapus. Its universal applicability establishes a solid foundation for chloroplast genome sequencing and analysis of this species. Moreover, it serves as a benchmark for developing similar methods to extract chloroplast genomes from other medicinal plants.
Assuntos
Genoma de Cloroplastos , Plantas Medicinais , DNA de Cloroplastos/genética , Plantas Medicinais/genética , Cloroplastos/genética , Mapeamento Cromossômico , FilogeniaRESUMO
Photodynamic therapy (PDT) has recently been considered a potential tumor therapy due to its time-space specificity and non-invasive advantages. PDT can not only directly kill tumor cells by using cytotoxic reactive oxygen species but also induce an anti-tumor immune response by causing immunogenic cell death of tumor cells. Although it exhibits a promising prospect in treating tumors, there are still many problems to be solved in its practical application. Tumor hypoxia and immunosuppressive microenvironment seriously affect the efficacy of PDT. The hypoxic and immunosuppressive microenvironment is mainly due to the abnormal vascular matrix around the tumor, its abnormal metabolism, and the influence of various immunosuppressive-related cells and their expressed molecules. Thus, reprogramming the tumor microenvironment (TME) is of great significance for rejuvenating PDT. This article reviews the latest strategies for rejuvenating PDT, from regulating tumor vascular matrix, interfering with tumor cell metabolism, and reprogramming immunosuppressive related cells and factors to reverse tumor hypoxia and immunosuppressive microenvironment. These strategies provide valuable information for a better understanding of the significance of TME in PDT and also guide the development of the next-generation multifunctional nanoplatforms for PDT.
Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes , Microambiente Tumoral , Hipóxia , Espécies Reativas de Oxigênio , Linhagem Celular TumoralRESUMO
Wilforlide A is one of the main active constituents produced in trace amounts in Tripterygium wilfordii Hook F, which has excellent anti-inflammatory and immune suppressive effects. Despite the seeming structural simplicity of the compound, the biosynthetic pathway of wilforlide A remains unknown. Gene-specific expression analysis and genome mining were used to identify the gene candidates, and their functions were studied in vitro and in vivo. A modularized two-step (M2S) technique and CRISPR-Cas9 methods were used to construct engineering yeast. Here, we identified a cytochrome P450, TwCYP82AS1, that catalyses C-22 hydroxylation during wilforlide A biosynthesis. We also found that TwCYP712K1 to K3 can further oxidize the C-29 carboxylation of oleanane-type triterpenes in addition to friedelane-type triterpenes. Reconstitution of the biosynthetic pathway in engineered yeast increased the precursor supply, and combining TwCYP82AS1 and TwCYP712Ks produced abrusgenic acid, which was briefly acidified to achieve the semisynthesis of wilforlide A. Our work presents an alternative metabolic engineering approach for obtaining wilforlide A without relying on extraction from plants.
Assuntos
Ácido Oleanólico/análogos & derivados , Saccharomyces cerevisiae , Triterpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triterpenos/metabolismo , Anti-Inflamatórios/metabolismoRESUMO
BACKGROUND: Diabetes is a predominant driver of coronary artery disease worldwide. This study aims to unravel the distinct characteristics of oral and gut microbiota in diabetic coronary heart disease (DCHD). Simultaneously, we aim to establish a causal link between the diabetes-driven oral-gut microbiota axis and increased susceptibility to diabetic myocardial ischemia-reperfusion injury (MIRI). METHODS: We comprehensively investigated the microbial landscape in the oral and gut microbiota in DCHD using a discovery cohort (n = 183) and a validation chohort (n = 68). Systematically obtained oral (tongue-coating) and fecal specimens were subjected to metagenomic sequencing and qPCR analysis, respectively, to holistically characterize the microbial consortia. Next, we induced diabetic MIRI by administering streptozotocin to C57BL/6 mice and subsequently investigated the potential mechanisms of the oral-gut microbiota axis through antibiotic pre-treatment followed by gavage with specific bacterial strains (Fusobacterium nucleatum or fecal microbiota from DCHD patients) to C57BL/6 mice. RESULTS: Specific microbial signatures such as oral Fusobacterium nucleatum and gut Lactobacillus, Eubacterium, and Roseburia faecis, were identified as potential microbial biomarkers in DCHD. We further validated that oral Fusobacterium nucleatum and gut Lactobacillus are increased in DCHD patients, with a positive correlation between the two. Experimental evidence revealed that in hyperglycemic mice, augmented Fusobacterium nucleatum levels in the oral cavity were accompanied by an imbalance in the oral-gut axis, characterized by an increased coexistence of Fusobacterium nucleatum and Lactobacillus, along with elevated cardiac miRNA-21 and a greater extent of myocardial damage indicated by TTC, HE, TUNEL staining, all of which contributed to exacerbated MIRI. CONCLUSION: Our findings not only uncover dysregulation of the oral-gut microbiota axis in diabetes patients but also highlight the pivotal intermediary role of the increased abundance of oral F. nucleatum and gut Lactobacillus in exacerbating MIRI. Targeting the oral-gut microbiota axis emerges as a potent strategy for preventing and treating DCHD. Oral-gut microbial transmission constitutes an intermediate mechanism by which diabetes influences myocardial injury, offering new insights into preventing acute events in diabetic patients with coronary heart disease.
Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fusobacterium nucleatum/fisiologia , Doença da Artéria Coronariana/etiologiaRESUMO
Notoginsenosides are important bioactive compounds from Panax notoginseng (Burk.) F. H. Chen, most of which have xylose in their sugar chains. However, the xylosyltransferases involved in the generation of notoginsenosides remain poorly understood, posing a bottleneck for further study of the biosynthesis of notoginsenosides. In this work, a new xylosyltransferase gene, PnUGT57 (named UGT94BW1), was identified from P. notoginseng, which has a distinct sequence and could catalyze the 2'-O glycosylation of ginsenosides Rh1 and Rg1 to produce notoginsenosides R2 and R1, respectively. We first characterized the optimal conditions for the PnUGT57 activity and its enzymatic kinetic parameters, and then, molecular docking and site-directed mutagenesis were performed to elucidate the catalytic mechanism of PnUGT57. Combined with the results of site-directed mutagenesis, Glu26, Ser266, Glu267, Trp347, Ser348, and Glu352 in PnUGT57 were identified as the key residues involved in 2'-O glycosylation of C-6 O-Glc, and PnUGT57R175A and PnUGT57G237A could significantly improve the catalytic activity of PnUGT57. These findings not only provide a new xylosyltransferase gene for augmenting the plant xylosyltransferase database but also identify the pivotal sites and catalytic mechanism of the enzyme, which would provide reference for the modification and application of xylosyltransferases in the future.
Assuntos
Ginsenosídeos , Panax notoginseng , Pentosiltransferases , UDP Xilose-Proteína Xilosiltransferase , Ginsenosídeos/metabolismo , Ginsenosídeos/biossíntese , Ginsenosídeos/química , Glicosilação , Pentosiltransferases/metabolismo , Pentosiltransferases/genética , Estrutura Molecular , Mutagênese Sítio-Dirigida , Simulação de Acoplamento MolecularRESUMO
Celastrol is a bioactive pentacyclic triterpenoid with promising therapeutic effects that is mainly distributed in Celastraceae plants. Although some enzymes involved in the celastrol biosynthesis pathway have been reported, many biosynthetic steps remain unknown. Herein, transcriptomics and metabolic profiles of multiple species in Celastraceae were integrated to screen for cytochrome P450s (CYPs) that are closely related to celastrol biosynthesis. The CYP716 enzyme, TwCYP716C52, was found to be able to oxidize the C-2 position of polpunonic acid, a precursor of celastrol, to form the wilforic acid C. RNAi-mediated repression of TwCYP716C52 in Tripterygium wilfordii suspension cells further confirmed its involvement in celastrol biosynthesis. The C-2 catalytic mechanisms of TwCYP716C52 were further explored by using molecular docking and site-directed mutagenesis experiments. Moreover, a modular optimization strategy was used to construct an engineered yeast to produce wilforic acid C at a titer of 5.8 mg·L-1. This study elucidates the celastrol biosynthetic pathway and provides important functional genes and sufficient precursors for further enzyme discovery.
Assuntos
Saccharomyces cerevisiae , Triterpenos , Saccharomyces cerevisiae/metabolismo , Simulação de Acoplamento Molecular , Triterpenos Pentacíclicos , Triterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Tripterygium/genéticaRESUMO
The resinous stem of Aquilaria sinensis (Lour.) Gilg is the sole legally authorized source of agarwood in China. However, whether other tissue parts can be potential substitutes for agarwood requires further investigation. In this study, we conducted metabolic analysis and transcriptome sequencing of six distinct tissues (root, stem, leaf, seed, husk, and callus) of A. sinensis to investigate the variations in metabolite distribution characteristics and transcriptome data across different tissues. A total of 331 differential metabolites were identified by chromatography-mass spectrometry (GC-MS), of which 22.96% were terpenoids. The differentially expressed genes (DEGs) in RNA sequencing were enriched in sesquiterpene synthesis via the mevalonate pathway. The present study establishes a solid foundation for exploring potential alternatives to agarwood.
Assuntos
Thymelaeaceae , Transcriptoma , Análise de Sequência de RNA , Sequência de Bases , Thymelaeaceae/química , MetabolomaRESUMO
In this study, we developed a green and multifunctional bioactive nanoemulsion (BBG-NEs) of Blumea balsamifera oil using Bletilla striata polysaccharide (BSP) and glycyrrhizic acid (GA) as natural emulsifiers. The process parameters were optimized using particle size, PDI, and zeta potential as evaluation parameters. The physicochemical properties, stability, transdermal properties, and bioactivities of the BBG-NEs under optimal operating conditions were investigated. Finally, network pharmacology and molecular docking were used to elucidate the potential molecular mechanism underlying its wound-healing properties. After parameter optimization, BBG-NEs exhibited excellent stability and demonstrated favorable in vitro transdermal properties. Furthermore, it displayed enhanced antioxidant and wound-healing effects. SD rats wound-healing experiments demonstrated improved scab formation and accelerated healing in the BBG-NE treatment relative to BBO and emulsifier groups. Pharmacological network analyses showed that AKT1, CXCL8, and EGFR may be key targets of BBG-NEs in wound repair. The results of a scratch assay and Western blotting assay also demonstrated that BBG-NEs could effectively promote cell migration and inhibit inflammatory responses. These results indicate the potential of the developed BBG-NEs for antioxidant and skin wound applications, expanding the utility of natural emulsifiers. Meanwhile, this study provided a preliminary explanation of the potential mechanism of BBG-NEs to promote wound healing through network pharmacology and molecular docking, which provided a basis for the mechanistic study of green multifunctional nanoemulsions.
Assuntos
Antioxidantes , Emulsificantes , Emulsões , Ácido Glicirrízico , Simulação de Acoplamento Molecular , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Emulsões/química , Emulsificantes/química , Emulsificantes/farmacologia , Ratos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Química Verde , Humanos , Ratos Sprague-Dawley , Nanopartículas/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Fabaceae/química , Masculino , Tamanho da Partícula , Movimento Celular/efeitos dos fármacosRESUMO
The root of Paeonia lactiflora pall. is a significant component of traditional Chinese medicine, with terpenoids and their glycosides, such as paeoniflorins, serving as key active ingredients known for their anti-inflammatory, hepatoprotective, and analgesic properties. By generating a transcriptome and functionally characterizing 32 terpene synthases (TPSs) from P. lactiflora, we successfully constructed 24 pESC-Trp-PlTPS expression vectors. Through expression in Saccharomyces cerevisiae engineered strains, we identified four mono-TPSs and five sesqui-TPSs that produce 18 compounds, including eight monoterpenes and ten sesquiterpenes in vitro. This includes a bifunctional enzyme (PlTPS22). Additionally, PlTPS21 was characterized as a pinene synthase with α-pinene as its main product. The expression pattern of PlTPS21 aligns closely with the accumulation patterns of paeoniflorins and α-pinene in the plant, suggesting that PlTPS21 is a key enzyme in the biosynthesis of paeoniflorin.
Assuntos
Alquil e Aril Transferases , Paeonia , Paeonia/genética , Paeonia/enzimologia , Paeonia/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Terpenos/metabolismo , Terpenos/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Filogenia , TranscriptomaRESUMO
Safflower (Carthamus tinctorius L.) has been recognized for its medicinal value, but there have been limited studies on the glycosyltransferases involved in the biosynthesis of flavonoid glycosides from safflower. In this research, we identified two highly efficient flavonoid O-glycosyltransferases, CtOGT1 and CtOGT2, from safflower performing local BLAST alignment. By constructing a prokaryotic expression vector, we conducted in vitro enzymatic reactions and discovered that these enzymes were capable of catalyzing two-step O-glycosylation using substrates such as kaempferol, quercetin, and eriodictyol. Moreover, they exhibited efficient catalytic activity towards various compounds, including flavones (apigenin, scutellarein), dihydrochalcone (phloretin), isoflavones (genistein, daidzein), flavanones (naringenin, glycyrrhizin), and flavanonols (dihydrokaempferol), leading to the formation of O-glycosides. The broad substrate specificity of these enzymes is noteworthy. This study provides valuable insights into the biosynthetic pathways of flavonoid glycosides in safflower. The discovery of CtOGT1 and CtOGT2 enhances our understanding of the enzymatic processes involved in synthesizing flavonoid glycosides in safflower, contributing to the overall comprehension of secondary metabolite biosynthesis in this plant species.
Assuntos
Carthamus tinctorius , Flavonas , Carthamus tinctorius/metabolismo , Glicosiltransferases/metabolismo , Flavonoides/metabolismo , Glicosídeos/metabolismo , Flavonas/metabolismoRESUMO
Aporphine alkaloids have diverse pharmacological activities; however, our understanding of their biosynthesis is relatively limited. Previous studies have classified aporphine alkaloids into two categories based on the configuration and number of substituents of the D-ring and have proposed preliminary biosynthetic pathways for each category. In this study, we identified two specific cytochrome P450 enzymes (CYP80G6 and CYP80Q5) with distinct activities toward (S)-configured and (R)-configured substrates from the herbaceous perennial vine Stephania tetrandra, shedding light on the biosynthetic mechanisms and stereochemical features of these two aporphine alkaloid categories. Additionally, we characterized two CYP719C enzymes (CYP719C3 and CYP719C4) that catalyzed the formation of the methylenedioxy bridge, an essential pharmacophoric group, on the A- and D-rings, respectively, of aporphine alkaloids. Leveraging the functional characterization of these crucial cytochrome P450 enzymes, we reconstructed the biosynthetic pathways for the two types of aporphine alkaloids in budding yeast (Saccharomyces cerevisiae) for the de novo production of compounds such as (R)-glaziovine, (S)-glaziovine, and magnoflorine. This study provides key insight into the biosynthesis of aporphine alkaloids and lays a foundation for producing these valuable compounds through synthetic biology.
Assuntos
Aporfinas , Sistema Enzimático do Citocromo P-450 , Saccharomyces cerevisiae , Aporfinas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Saccharomyces cerevisiae/metabolismo , Stephania/metabolismo , Stephania/química , Alcaloides/biossíntese , Alcaloides/metabolismo , Vias BiossintéticasRESUMO
Based on the research results and development trend of modern life sciences, our team first proposed in 2020 that Dao-di herbs had the characteristics of "excellent shape, high quality, and superior effect", which broadened the scope of traditional medicinal herb description. In recent years, with the gradual deepening of the research on the natural, material, and medicinal properties of Dao-di herbs in traditional Chinese medicine(TCM), the scientific connotation of "excellent shape, high quality, and superior effect" of Dao-di herbs has been enriched. "High quality" is mainly embodied in the fact that Dao-di herbs have a "unique chemotype", which can be used as the material basis of "superior effect" and can participate in regulating the formation of "excellent shape". Similar to the principle of "unity of body and spirit", in the process of long-term evolution, Dao-di herbs gradually form unique environmental adaptive characteristics, which is manifested as the "unity of shape and quality". The characteristics of "excellent shape, high quality, and superior effect" of Dao-di herbs are affected by the interaction between the genotype of the species and the ecological factors of the production area, which can be reflected in the climate-dominated type, production measure-dominated type, or germplasm-dominated type. According to the natural, material, and medicinal attributes of Dao-di herbs, model organisms such as Salvia miltiorrhiza can be constructed, and the research methodology system of the characteristics of "excellent shape, high quality, and superior effect" can be established, including quality evaluation system based on "high quality", characterization methodology system of "property-efficacy relationship", and homeostatic comprehensive control system based on "excellent shape and high quality". In the future, research on Dao-di herbs should pay more attention to in-depth and extensive basic work, and it is necessary to establish a comprehensive medicinal model plant research platform and build a medicinal model plant mutant library, so as to provide powerful model organisms for the functional gene research of other plants. Meanwhile, three research hotspots have been proposed for the research on the characteristics of "excellent shape, high quality, and superior effect" of Dao-di herbs, so as to reveal the mechanisms of their genetic basis, biological characteristics, and ecological adaptability. These studies will provide a scientific basis for optimizing the directed breeding of medicinal plants, standardizing cultivation, and improving the quality of medicinal herbs, so as to promote the sustainable use and development of Dao-di herbs.
Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Plantas Medicinais , Medicamentos de Ervas Chinesas/química , Plantas Medicinais/química , Plantas Medicinais/genética , Plantas Medicinais/classificação , HumanosRESUMO
There are abundant local chronicles in the Qing Dynasty, which provide rich literature for the research on the production of medicinal materials. This paper collates the contents of Fuling in the local chronicles of the Qing Dynasty to reveal the distribution of Fuling in China at that time. The distribution of Fuling in the local chronicles of the Qing Dynasty involved 318 county-level regions in 23 provinces. The distribution records were mainly found in Yunnan, Anhui, Hunan, Zhejiang, Fujian, Jiangxi, Shaanxi, and Hubei. The local chronicles of the Qing Dynasty showed that Yunnan was the Dao-di producing area of Fuling, which was consistent with the materia medica of the Ming and Qing Dynasties. In the Qing Dynasty, the quality of Fuling in Dabie Mountains of Anhui was excellent, and it was called "Anling". The development of Anling benefited from the introduction of planting technology from Yunnan and the development of characteristic cultivation technology, with the formation of a complete industrial chain covering planting, processing, and sales. The abundant historical materials of Fuling in the local chronicles of the Qing Dynasty provide not only a documentary basis for revealing the changes of the Dao-di producing areas but also a historical context for the development of modern Fuling-producing areas such as Fujian, Jiangxi, and Hunan. In addition to the information of producing areas, the local records recorded the quality, commodity evaluation, and cultivation techniques of Fuling, filling the gaps in ancient materia medica books and providing detailed historical materials for understanding the producing areas and application of Fuling in the Qing Dynasty.
Assuntos
Medicina Tradicional Chinesa , China , Medicina Tradicional Chinesa/história , Humanos , História do Século XIX , História do Século XVII , Medicamentos de Ervas Chinesas/história , Medicamentos de Ervas Chinesas/química , História Antiga , História do Século XVIIIRESUMO
Sequential catalysis by ent-copalyl diphosphate(CPS) and ent-kaurene synthase(KS) is a critical step for plants to initiate the biosynthesis of gibberellin with geranylgeranyl pyrophosphate(GGPP) as the substrate. This study mined the transcriptome data of Stellera chamaejasme and cloned two key diterpene synthase genes, SchCPS and SchKS, involved in the gibberellin pathway. The two genes had the complete open reading frames of 2 595 bp and 1 701 bp, encoding two hydrophilic proteins composed of 864 and 566 amino acid residues and with the relative molecular mass of 97.9 kDa and 64.6 kDa and the theoretical isoelectric points of 5.61 and 6.12, respectively. Sequence comparison and phylogenetic tree showed that SchCPS contained LHS, PNV, and DxDD motifs conserved in the CPS family and was categorized in the TPS-c subfamily, while SchKS contained DDxxD, NSE/DTE and PIx motifs conserved in the KS family and was categorized in the TPS-e subfamily. Functional validation showed that SchCPS catalyzed the protonation and cyclization of GGPP to ent-CPP, while SchKS acted on ent-CPP dephosphorylation and re-cyclization to ent-kaurene. In this study, the full-length sequences of SchCPS and SchKS were cloned and functionally verified for the first time, which not only enriched the existing CPS and KS gene libraries but also laid a foundation for the cloning and biosynthesis pathway analysis of more genes involved in the synthesis of active components in S. chamaejasme.
Assuntos
Alquil e Aril Transferases , Filogenia , Proteínas de Plantas , Thymelaeaceae , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/química , Thymelaeaceae/genética , Thymelaeaceae/enzimologia , Thymelaeaceae/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Sequência de Aminoácidos , Diterpenos do Tipo Caurano/metabolismo , Diterpenos do Tipo Caurano/química , Alinhamento de Sequência , Clonagem MolecularRESUMO
Digitoxin, an important secondary metabolite of Digitalis purpurea, is a commonly used cardiotonic in clinical practice. 3ß-Hydroxysteroid dehydrogenase(3ßHSD) is a key enzyme involved in the biosynthesis of digitoxin. It belongs to the short-chain dehydrogenase/reductase(SDR) family, playing a role in the biosynthesis of cardiac glycosides by oxidizing and isomerizing the precursor sterol. In this study, two 3ßHSD genes were cloned from D. purpurea. The results showed that the open reading frame(ORF) of Dp3ßHSD1 was 780 bp, encoding 259 amino acid residues. The ORF of Dp3ßHSD2 was 774 bp and encoded 257 residues. Dp3ßHSD1/2 had the cofactor binding site TGxxxA/GxG and the catalytic site YxxxK. In vitro experiments confirmed that Dp3ßHSD1/2 catalyzed the generation of progesterone from pregnenolone, and Dp3ßHSD1 had stronger catalytic capacity than Dp3ßHSD2. The expression level of Dp3ßHSD1 was much higher than that of Dp3ßHSD2 in leaves, and digitoxin was only accumulated in leaves. The results implied that Dp3ßHSD1 played a role in the dehydrogenation of pregnenolone to produce progesterone in the biosynthesis of digitoxin. This study provides a reference for further exploring the biosynthetic pathway of cardiac glycosides in D. purpurea.