Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 194(4): 2288-2300, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38128552

RESUMO

The water status of the living tissue in leaves between the xylem and stomata (outside xylem zone (OXZ) plays a critical role in plant function and global mass and energy balance but has remained largely inaccessible. We resolve the local water relations of OXZ tissue using a nanogel reporter of water potential (ψ), AquaDust, that enables an in situ, nondestructive measurement of both ψ of xylem and highly localized ψ at the terminus of transpiration in the OXZ. Working in maize (Zea mays L.), these localized measurements reveal gradients in the OXZ that are several folds larger than those based on conventional methods and values of ψ in the mesophyll apoplast well below the macroscopic turgor loss potential. We find a strong loss of hydraulic conductance in both the bundle sheath and the mesophyll with decreasing xylem potential but not with evaporative demand. Our measurements suggest the OXZ plays an active role in regulating the transpiration path, and our methods provide the means to study this phenomenon.


Assuntos
Água , Zea mays , Água/fisiologia , Zea mays/fisiologia , Transpiração Vegetal/fisiologia , Folhas de Planta/fisiologia , Xilema/fisiologia , Estômatos de Plantas/fisiologia
2.
New Phytol ; 242(2): 453-465, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413216

RESUMO

The water status of the living tissue in leaves is critical in determining plant function and global exchange of water and CO2. Despite significant advances in the past two decades, persistent questions remain about the tissue-specific origins of leaf hydraulic properties and their dependence on water status. We use a fluorescent nanoparticle reporter that provides water potential in the mesophyll apoplast adjacent to the epidermis of intact leaves to complement existing methods based on the Scholander Pressure Chamber (SPC). Working in tomato leaves, this approach provides access to the hydraulic conductance of the whole leaf, xylem, and outside-xylem tissues. These measurements show that, as stem water potential decreases, the water potential in the mesophyll apoplast can drop below that assessed with the SPC and can fall significantly below the turgor loss point of the leaf. We find that this drop in potential, dominated by the large loss (10-fold) of hydraulic conductance of the outside-xylem tissue, is not however strong enough to significantly limit transpiration. These observations highlight the need to reassess models of water transfer through the outside-xylem tissues, the potential importance of this tissue in regulating transpiration, and the power of new approaches for probing leaf hydraulics.


Assuntos
Solanum lycopersicum , Folhas de Planta/fisiologia , Água/fisiologia , Xilema/fisiologia , Transpiração Vegetal
3.
J Exp Bot ; 74(3): 1039-1058, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36371803

RESUMO

The relationship between root, stem, and leaf hydraulic status and stomatal conductance during drought (field capacities: 100-25%) and drought recovery was studied in Helianthus annuus and five tree species (Populus×canadensis, Acer saccharum, A. saccharinum, Picea glauca, and Tsuga canadensis). Measurements of stomatal conductance (gs), organ water potential, and vessel embolism were performed and the following was observed: (i) cavitation only occurred in the petioles and not the roots or stems of tree species regardless of drought stress; (ii) in contrast, all H. annuus organs exhibited cavitation to an increasing degree from root to petiole; and (iii) all species initiated stomatal closure before cavitation events occurred or the expected turgor loss point was reached. After rewatering: (i) cavitated vessels in petioles of Acer species recovered whereas those of P. ×canadensis did not and leaves were shed; (ii) in H. annuus, cavitated xylem vessels were refilled in roots and petioles, but not in stems; and (iii) despite refilled embolisms in petioles of some species during drought recovery, gs never returned to pre-drought conditions. Conclusions are drawn with respect to the hydraulic segmentation hypothesis for above- and below-ground organs, and the timeline of embolism occurrence and repair is discussed.


Assuntos
Acer , Secas , Transpiração Vegetal , Folhas de Planta , Água , Xilema , Árvores , Caules de Planta
4.
Ann Bot ; 130(3): 301-316, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35896037

RESUMO

BACKGROUND: Recent reports of extreme levels of undersaturation in internal leaf air spaces have called into question one of the foundational assumptions of leaf gas exchange analysis, that leaf air spaces are effectively saturated with water vapour at leaf surface temperature. Historically, inferring the biophysical states controlling assimilation and transpiration from the fluxes directly measured by gas exchange systems has presented a number of challenges, including: (1) a mismatch in scales between the area of flux measurement, the biochemical cellular scale and the meso-scale introduced by the localization of the fluxes to stomatal pores; (2) the inaccessibility of the internal states of CO2 and water vapour required to define conductances; and (3) uncertainties about the pathways these internal fluxes travel. In response, plant physiologists have adopted a set of simplifying assumptions that define phenomenological concepts such as stomatal and mesophyll conductances. SCOPE: Investigators have long been concerned that a failure of basic assumptions could be distorting our understanding of these phenomenological conductances, and the biophysical states inside leaves. Here we review these assumptions and historical efforts to test them. We then explore whether artefacts in analysis arising from the averaging of fluxes over macroscopic leaf areas could provide alternative explanations for some part, if not all, of reported extreme states of undersaturation. CONCLUSIONS: Spatial heterogeneities can, in some cases, create the appearance of undersaturation in the internal air spaces of leaves. Further refinement of experimental approaches will be required to separate undersaturation from the effects of spatial variations in fluxes or conductances. Novel combinations of current and emerging technologies hold promise for meeting this challenge.


Assuntos
Dióxido de Carbono , Vapor , Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Plantas/metabolismo , Temperatura
5.
New Phytol ; 224(2): 675-688, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31364171

RESUMO

Signal coordination in response to changes in water availability remains unclear, as does the role of embolism events in signaling drought stress. Sunflowers were exposed to two drought treatments of varying intensity while simultaneously monitoring changes in stomatal conductance, acoustic emissions (AE), turgor pressure, surface-level electrical potential, organ-level water potential and leaf abscisic acid (ABA) concentration. Leaf, stem and root xylem vulnerability to embolism were measured with the single vessel injection technique. In both drought treatments, it was found that AE events and turgor changes preceded the onset of stomatal closure, whereas electrical surface potentials shifted concurrently with stomatal closure. Leaf-level ABA concentration did not change until after stomata were closed. Roots and petioles were equally vulnerable to drought stress based on the single vessel injection technique. However, anatomical analysis of the xylem indicated that the increased AE events were not a result of xylem embolism formation. Additionally, roots and stems never reached a xylem pressure threshold that would initiate runaway embolism throughout the entire experiment. It is concluded that stomatal closure was not embolism-driven, but, rather, that onset of stomatal closure was most closely correlated with the hydraulic signal from changes in leaf turgor.


Assuntos
Helianthus/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Transdução de Sinais , Água/metabolismo , Ácido Abscísico , Secas , Raízes de Plantas/fisiologia , Caules de Planta/fisiologia , Estresse Fisiológico
6.
J Exp Bot ; 67(7): 2063-79, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26944636

RESUMO

Plants require the capacity for quick and precise recognition of external stimuli within their environment for survival. Upon exposure to biotic (herbivores and pathogens) or abiotic stressors (environmental conditions), plants can activate hydraulic, chemical, or electrical long-distance signals to initiate systemic stress responses. A plant's stress reactions can be highly precise and orchestrated in response to different stressors or stress combinations. To date, an array of information is available on plant responses to single stressors. However, information on simultaneously occurring stresses that represent either multiple, within, or across abiotic and biotic stress types is nascent. Likewise, the crosstalk between hydraulic, chemical, and electrical signaling pathways and the importance of each individual signaling type requires further investigation in order to be fully understood. The overlapping presence and speed of the signals upon plant exposure to various stressors makes it challenging to identify the signal initiating plant systemic stress/defense responses. Furthermore, it is thought that systemic plant responses are not transmitted by a single pathway, but rather by a combination of signals enabling the transmission of information on the prevailing stressor(s) and its intensity. In this review, we summarize the mode of action of hydraulic, chemical, and electrical long-distance signals, discuss their importance in information transmission to biotic and abiotic stressors, and suggest future research directions.


Assuntos
Fenômenos Fisiológicos Vegetais , Transdução de Sinais , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA