Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(8): 2167-2182.e22, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33811809

RESUMO

Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1ß, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.


Assuntos
COVID-19/complicações , Cardiotônicos/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Cardiopatias/tratamento farmacológico , Quinazolinonas/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Citocinas/metabolismo , Feminino , Cardiopatias/etiologia , Células-Tronco Embrionárias Humanas , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/metabolismo , Tratamento Farmacológico da COVID-19
2.
EMBO J ; 43(11): 2127-2165, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580776

RESUMO

The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic, but pericellular oxygen levels, which are affected by oxygen diffusivity and consumption, are rarely reported. Here, we provide evidence that several cell types in culture actually experience local hypoxia, with important implications for cell metabolism and function. We focused initially on adipocytes, as adipose tissue hypoxia is frequently observed in obesity and precedes diminished adipocyte function. Under standard conditions, cultured adipocytes are highly glycolytic and exhibit a transcriptional profile indicative of physiological hypoxia. Increasing pericellular oxygen diverted glucose flux toward mitochondria, lowered HIF1α activity, and resulted in widespread transcriptional rewiring. Functionally, adipocytes increased adipokine secretion and sensitivity to insulin and lipolytic stimuli, recapitulating a healthier adipocyte model. The functional benefits of increasing pericellular oxygen were also observed in macrophages, hPSC-derived hepatocytes and cardiac organoids. Our findings demonstrate that oxygen is limiting in many terminally-differentiated cell types, and that considering pericellular oxygen improves the quality, reproducibility and translatability of culture models.


Assuntos
Adipócitos , Diferenciação Celular , Oxigênio , Oxigênio/metabolismo , Adipócitos/metabolismo , Adipócitos/citologia , Humanos , Técnicas de Cultura de Células/métodos , Animais , Glicólise , Hepatócitos/metabolismo , Hipóxia Celular , Mitocôndrias/metabolismo , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células Cultivadas , Glucose/metabolismo , Macrófagos/metabolismo
3.
Am J Hum Genet ; 110(9): 1600-1605, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37607539

RESUMO

Recent studies in non-human model systems have shown therapeutic potential of nucleoside-modified messenger RNA (modRNA) treatments for lysosomal storage diseases. Here, we assessed the efficacy of a modRNA treatment to restore the expression of the galactosidase alpha (GLA), which codes for α-Galactosidase A (α-GAL) enzyme, in a human cardiac model generated from induced pluripotent stem cells (iPSCs) derived from two individuals with Fabry disease. Consistent with the clinical phenotype, cardiomyocytes from iPSCs derived from Fabry-affected individuals showed accumulation of the glycosphingolipid Globotriaosylceramide (GB3), which is an α-galactosidase substrate. Furthermore, the Fabry cardiomyocytes displayed significant upregulation of lysosomal-associated proteins. Upon GLA modRNA treatment, a subset of lysosomal proteins were partially restored to wild-type levels, implying the rescue of the molecular phenotype associated with the Fabry genotype. Importantly, a significant reduction of GB3 levels was observed in GLA modRNA-treated cardiomyocytes, demonstrating that α-GAL enzymatic activity was restored. Together, our results validate the utility of iPSC-derived cardiomyocytes from affected individuals as a model to study disease processes in Fabry disease and the therapeutic potential of GLA modRNA treatment to reduce GB3 accumulation in the heart.


Assuntos
Doença de Fabry , Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , RNA , Doença de Fabry/genética , Doença de Fabry/terapia , RNA Mensageiro
4.
EMBO Rep ; 24(10): e55043, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37551717

RESUMO

The cardiac endothelium influences ventricular chamber development by coordinating trabeculation and compaction. However, the endothelial-specific molecular mechanisms mediating this coordination are not fully understood. Here, we identify the Sox7 transcription factor as a critical cue instructing cardiac endothelium identity during ventricular chamber development. Endothelial-specific loss of Sox7 function in mice results in cardiac ventricular defects similar to non-compaction cardiomyopathy, with a change in the proportions of trabecular and compact cardiomyocytes in the mutant hearts. This phenotype is paralleled by abnormal coronary artery formation. Loss of Sox7 function disrupts the transcriptional regulation of the Notch pathway and connexins 37 and 40, which govern coronary arterial specification. Upon Sox7 endothelial-specific deletion, single-nuclei transcriptomics analysis identifies the depletion of a subset of Sox9/Gpc3-positive endocardial progenitor cells and an increase in erythro-myeloid cell lineages. Fate mapping analysis reveals that a subset of Sox7-null endothelial cells transdifferentiate into hematopoietic but not cardiomyocyte lineages. Our findings determine that Sox7 maintains cardiac endothelial cell identity, which is crucial to the cellular cross-talk that drives ventricular compaction and coronary artery development.


Assuntos
Vasos Coronários , Células Endoteliais , Animais , Camundongos , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Miócitos Cardíacos/metabolismo , Regulação da Expressão Gênica , Endotélio/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
5.
Proteomics ; : e2300361, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350726

RESUMO

Immunotherapy harnesses neoantigens encoded within the human genome, but their therapeutic potential is hampered by low expression, which may be controlled by the nonsense-mediated mRNA decay (NMD) pathway. This study investigates the impact of UPF1-knockdown on the expression of non-canonical/mutant proteins, employing proteogenomic to explore UPF1 role within the NMD pathway. Additionally, we conducted a comprehensive pan-cancer analysis of UPF1 expression and evaluated UPF1 expression in Triple-Negative Breast Cancer (TNBC) tissue in-vivo. Our findings reveal that UPF1-knockdown leads to increased translation of non-canonical/mutant proteins, particularly those originating from retained-introns, pseudogenes, long non-coding RNAs, and unannotated transcript biotypes. Moreover, our analysis demonstrates elevated UPF1 expression in various cancer types, with notably heightened protein levels in patient-derived TNBC tumors compared to adjacent tissues. This study elucidates UPF1 role in mitigating transcriptional noise by degrading transcripts encoding non-canonical/mutant proteins. Targeting this mechanism may reveal a new spectrum of neoantigens accessible to the antigen presentation pathway. Our novel findings provide a strong foundation for the development of therapeutic strategies aimed at targeting UPF1 or modulating the NMD pathway.

6.
Psychol Med ; : 1-11, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38803271

RESUMO

BACKGROUND: Epidemiological data offer conflicting views of the natural course of binge-eating disorder (BED), with large retrospective studies suggesting a protracted course and small prospective studies suggesting a briefer duration. We thus examined changes in BED diagnostic status in a prospective, community-based study that was larger and more representative with respect to sex, age of onset, and body mass index (BMI) than prior multi-year prospective studies. METHODS: Probands and relatives with current DSM-IV BED (n = 156) from a family study of BED ('baseline') were selected for follow-up at 2.5 and 5 years. Probands were required to have BMI > 25 (women) or >27 (men). Diagnostic interviews and questionnaires were administered at all timepoints. RESULTS: Of participants with follow-up data (n = 137), 78.1% were female, and 11.7% and 88.3% reported identifying as Black and White, respectively. At baseline, their mean age was 47.2 years, and mean BMI was 36.1. At 2.5 (and 5) years, 61.3% (45.7%), 23.4% (32.6%), and 15.3% (21.7%) of assessed participants exhibited full, sub-threshold, and no BED, respectively. No participants displayed anorexia or bulimia nervosa at follow-up timepoints. Median time to remission (i.e. no BED) exceeded 60 months, and median time to relapse (i.e. sub-threshold or full BED) after remission was 30 months. Two classes of machine learning methods did not consistently outperform random guessing at predicting time to remission from baseline demographic and clinical variables. CONCLUSIONS: Among community-based adults with higher BMI, BED improves with time, but full remission often takes many years, and relapse is common.

7.
PLoS Genet ; 17(10): e1009334, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710087

RESUMO

Homozygous nonsense mutations in CEP55 are associated with several congenital malformations that lead to perinatal lethality suggesting that it plays a critical role in regulation of embryonic development. CEP55 has previously been studied as a crucial regulator of cytokinesis, predominantly in transformed cells, and its dysregulation is linked to carcinogenesis. However, its molecular functions during embryonic development in mammals require further investigation. We have generated a Cep55 knockout (Cep55-/-) mouse model which demonstrated preweaning lethality associated with a wide range of neural defects. Focusing our analysis on the neocortex, we show that Cep55-/- embryos exhibited depleted neural stem/progenitor cells in the ventricular zone as a result of significantly increased cellular apoptosis. Mechanistically, we demonstrated that Cep55-loss downregulates the pGsk3ß/ß-Catenin/Myc axis in an Akt-dependent manner. The elevated apoptosis of neural stem/progenitors was recapitulated using Cep55-deficient human cerebral organoids and we could rescue the phenotype by inhibiting active Gsk3ß. Additionally, we show that Cep55-loss leads to a significant reduction of ciliated cells, highlighting a novel role in regulating ciliogenesis. Collectively, our findings demonstrate a critical role of Cep55 during brain development and provide mechanistic insights that may have important implications for genetic syndromes associated with Cep55-loss.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neocórtex/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Carcinogênese/metabolismo , Células Cultivadas , Citocinese/fisiologia , Homozigoto , Humanos , Camundongos , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Fenótipo
8.
J Biol Chem ; 298(2): 101547, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34971704

RESUMO

Complex diseases such as cancer and diabetes are underpinned by changes in metabolism, specifically by which and how nutrients are catabolized. Substrate utilization can be directly examined by measuring a metabolic endpoint rather than an intermediate (such as a metabolite in the tricarboxylic acid cycle). For instance, oxidation of specific substrates can be measured in vitro by incubation of live cultures with substrates containing radiolabeled carbon and measuring radiolabeled carbon dioxide. To increase throughput, we previously developed a miniaturized platform to measure substrate oxidation of both adherent and suspension cells using multiwell plates rather than flasks. This enabled multiple conditions to be examined simultaneously, ideal for drug screens and mechanistic studies. However, like many metabolic assays, this was not compatible with bicarbonate-buffered media, which is susceptible to alkalinization upon exposure to gas containing little carbon dioxide such as air. While other buffers such as HEPES can overcome this problem, bicarbonate has additional biological roles as a metabolic substrate and in modulating hormone signaling. Here, we create a bicarbonate-buffered well-plate platform to measure substrate oxidation. This was achieved by introducing a sealed environment within each well that was equilibrated with carbon dioxide, enabling bicarbonate buffering. As proof of principle, we assessed metabolic flux in cultured adipocytes, demonstrating that bicarbonate-buffered medium increased lipogenesis, glucose oxidation, and sensitivity to insulin in comparison to HEPES-buffered medium. This convenient and high-throughput method facilitates the study and screening of metabolic activity under more physiological conditions to aid biomedical research.


Assuntos
Bicarbonatos , Dióxido de Carbono , Técnicas de Cultura de Células , Meios de Cultura , Soluções Tampão , HEPES , Oxirredução
9.
Development ; 147(22)2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33144401

RESUMO

The inability of the adult mammalian heart to regenerate represents a fundamental barrier in heart failure management. By contrast, the neonatal heart retains a transient regenerative capacity, but the underlying mechanisms for the developmental loss of cardiac regenerative capacity in mammals are not fully understood. Wnt/ß-catenin signalling has been proposed as a key cardioregenerative pathway driving cardiomyocyte proliferation. Here, we show that Wnt/ß-catenin signalling potentiates neonatal mouse cardiomyocyte proliferation in vivo and immature human pluripotent stem cell-derived cardiomyocyte (hPSC-CM) proliferation in vitro By contrast, Wnt/ß-catenin signalling in adult mice is cardioprotective but fails to induce cardiomyocyte proliferation. Transcriptional profiling and chromatin immunoprecipitation sequencing of neonatal mouse and hPSC-CMs revealed a core Wnt/ß-catenin-dependent transcriptional network governing cardiomyocyte proliferation. By contrast, ß-catenin failed to re-engage this neonatal proliferative gene network in the adult heart despite partial transcriptional re-activation of a neonatal glycolytic gene programme. These findings suggest that ß-catenin might be repurposed from regenerative to protective functions in the adult heart in a developmental process dependent on the metabolic status of cardiomyocytes.


Assuntos
Proliferação de Células , Redes Reguladoras de Genes , Miócitos Cardíacos/metabolismo , Transcrição Gênica , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Miócitos Cardíacos/citologia , beta Catenina/genética
10.
Mol Cell Proteomics ; 20: 100030, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33583770

RESUMO

Many cell surface and secreted proteins are modified by the covalent addition of glycans that play an important role in the development of multicellular organisms. These glycan modifications enable communication between cells and the extracellular matrix via interactions with specific glycan-binding lectins and the regulation of receptor-mediated signaling. Aberrant protein glycosylation has been associated with the development of several muscular diseases, suggesting essential glycan- and lectin-mediated functions in myogenesis and muscle development, but our molecular understanding of the precise glycans, catalytic enzymes, and lectins involved remains only partially understood. Here, we quantified dynamic remodeling of the membrane-associated proteome during a time-course of myogenesis in cell culture. We observed wide-spread changes in the abundance of several important lectins and enzymes facilitating glycan biosynthesis. Glycomics-based quantification of released N-linked glycans confirmed remodeling of the glycome consistent with the regulation of glycosyltransferases and glycosidases responsible for their formation including a previously unknown digalactose-to-sialic acid switch supporting a functional role of these glycoepitopes in myogenesis. Furthermore, dynamic quantitative glycoproteomic analysis with multiplexed stable isotope labeling and analysis of enriched glycopeptides with multiple fragmentation approaches identified glycoproteins modified by these regulated glycans including several integrins and growth factor receptors. Myogenesis was also associated with the regulation of several lectins, most notably the upregulation of galectin-1 (LGALS1). CRISPR/Cas9-mediated deletion of Lgals1 inhibited differentiation and myotube formation, suggesting an early functional role of galectin-1 in the myogenic program. Importantly, similar changes in N-glycosylation and the upregulation of galectin-1 during postnatal skeletal muscle development were observed in mice. Treatment of new-born mice with recombinant adeno-associated viruses to overexpress galectin-1 in the musculature resulted in enhanced muscle mass. Our data form a valuable resource to further understand the glycobiology of myogenesis and will aid the development of intervention strategies to promote healthy muscle development or regeneration.


Assuntos
Galectina 1/metabolismo , Glicopeptídeos/metabolismo , Desenvolvimento Muscular , Animais , Linhagem Celular , Galectina 1/genética , Glicômica , Glicosilação , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Ratos
11.
Circulation ; 144(12): 947-960, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34264749

RESUMO

BACKGROUND: Ischemia-reperfusion injury (IRI) is one of the major risk factors implicated in morbidity and mortality associated with cardiovascular disease. During cardiac ischemia, the buildup of acidic metabolites results in decreased intracellular and extracellular pH, which can reach as low as 6.0 to 6.5. The resulting tissue acidosis exacerbates ischemic injury and significantly affects cardiac function. METHODS: We used genetic and pharmacologic methods to investigate the role of acid-sensing ion channel 1a (ASIC1a) in cardiac IRI at the cellular and whole-organ level. Human induced pluripotent stem cell-derived cardiomyocytes as well as ex vivo and in vivo models of IRI were used to test the efficacy of ASIC1a inhibitors as pre- and postconditioning therapeutic agents. RESULTS: Analysis of human complex trait genetics indicates that variants in the ASIC1 genetic locus are significantly associated with cardiac and cerebrovascular ischemic injuries. Using human induced pluripotent stem cell-derived cardiomyocytes in vitro and murine ex vivo heart models, we demonstrate that genetic ablation of ASIC1a improves cardiomyocyte viability after acute IRI. Therapeutic blockade of ASIC1a using specific and potent pharmacologic inhibitors recapitulates this cardioprotective effect. We used an in vivo model of myocardial infarction and 2 models of ex vivo donor heart procurement and storage as clinical models to show that ASIC1a inhibition improves post-IRI cardiac viability. Use of ASIC1a inhibitors as preconditioning or postconditioning agents provided equivalent cardioprotection to benchmark drugs, including the sodium-hydrogen exchange inhibitor zoniporide. At the cellular and whole organ level, we show that acute exposure to ASIC1a inhibitors has no effect on cardiac ion channels regulating baseline electromechanical coupling and physiologic performance. CONCLUSIONS: Our data provide compelling evidence for a novel pharmacologic strategy involving ASIC1a blockade as a cardioprotective therapy to improve the viability of hearts subjected to IRI.


Assuntos
Canais Iônicos Sensíveis a Ácido/biossíntese , Canais Iônicos Sensíveis a Ácido/genética , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Preparação de Coração Isolado/métodos , Masculino , Camundongos , Camundongos Knockout , Isquemia Miocárdica/terapia , Traumatismo por Reperfusão Miocárdica/terapia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Polimorfismo de Nucleotídeo Único/fisiologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Venenos de Aranha/farmacologia
12.
Circulation ; 143(16): 1614-1628, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33682422

RESUMO

BACKGROUND: Despite in-depth knowledge of the molecular mechanisms controlling embryonic heart development, little is known about the signals governing postnatal maturation of the human heart. METHODS: Single-nucleus RNA sequencing of 54 140 nuclei from 9 human donors was used to profile transcriptional changes in diverse cardiac cell types during maturation from fetal stages to adulthood. Bulk RNA sequencing and the Assay for Transposase-Accessible Chromatin using sequencing were used to further validate transcriptional changes and to profile alterations in the chromatin accessibility landscape in purified cardiomyocyte nuclei from 21 human donors. Functional validation studies of sex steroids implicated in cardiac maturation were performed in human pluripotent stem cell-derived cardiac organoids and mice. RESULTS: Our data identify the progesterone receptor as a key mediator of sex-dependent transcriptional programs during cardiomyocyte maturation. Functional validation studies in human cardiac organoids and mice demonstrate that the progesterone receptor drives sex-specific metabolic programs and maturation of cardiac contractile properties. CONCLUSIONS: These data provide a blueprint for understanding human heart maturation in both sexes and reveal an important role for the progesterone receptor in human heart development.


Assuntos
Coração/fisiopatologia , Receptores de Progesterona/metabolismo , Feminino , Humanos , Masculino , Fatores Sexuais
13.
Appetite ; 179: 106285, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36030908

RESUMO

This study first aimed to provide additional validation for a new tool to measure Feeder Motivations and Behaviour. Second, it aimed to evaluate how feeder motivations and behaviour are enacted within romantic relationships and whether this reflects a reciprocal or linear dynamic. Participants completed the Feeder Questionnaire composed of six motivational subscales (affection; waste avoidance; status; hunger avoidance; offloading; manners) and one subscale to measure feeder behaviour, measures of eating behaviour (restrained, emotional and external eating) and their BMI. Participants were analysed as individuals (n = 190) and within couples as dyads (n = 76 couples). In terms of validation of the measure, analysis using the non-dyadic data showed good internal reliability for all subscales and moderate correlations between feeder behaviour and motivations and measures of eating behaviour. In terms of couple dynamics, dyadic data analysis indicated evidence for reciprocity within couples for BMI, feeder behaviour and feeder motivations relating to waste avoidance, affection, manners and status but not for hunger avoidance or offloading. Dyadic analysis also indicated evidence for a more linear relationship with one participant's feeder behaviour and motivations relating to their partner's emotional and external eating. This study therefore provides further support for the usefulness of the Feeder Questionnaire. The study also indicates that feeder behaviour is complex within couples and may function in a reciprocal way but also with one partner's behaviour impacting upon their partner in a more linear fashion.


Assuntos
Relações Interpessoais , Motivação , Emoções , Humanos , Reprodutibilidade dos Testes , Inquéritos e Questionários
14.
Circulation ; 141(13): 1080-1094, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31941367

RESUMO

BACKGROUND: Myocardial infarction (MI) triggers myelopoiesis, resulting in heightened production of neutrophils. However, the mechanisms that sustain their production and recruitment to the injured heart are unclear. METHODS: Using a mouse model of the permanent ligation of the left anterior descending artery and flow cytometry, we first characterized the temporal and spatial effects of MI on different myeloid cell types. We next performed global transcriptome analysis of different cardiac cell types within the infarct to identify the drivers of the acute inflammatory response and the underlying signaling pathways. Using a combination of genetic and pharmacological strategies, we identified the sequelae of events that led to MI-induced myelopoiesis. Cardiac function was assessed by echocardiography. The association of early indexes of neutrophilia with major adverse cardiovascular events was studied in a cohort of patients with acute MI. RESULTS: Induction of MI results in rapid recruitment of neutrophils to the infarct, where they release specific alarmins, S100A8 and S100A9. These alarmins bind to the Toll-like receptor 4 and prime the nod-like receptor family pyrin domain-containing 3 inflammasome in naïve neutrophils and promote interleukin-1ß secretion. The released interleukin-1ß interacts with its receptor (interleukin 1 receptor type 1) on hematopoietic stem and progenitor cells in the bone marrow and stimulates granulopoiesis in a cell-autonomous manner. Genetic or pharmacological strategies aimed at disruption of S100A8/A9 and their downstream signaling cascade suppress MI-induced granulopoiesis and improve cardiac function. Furthermore, in patients with acute coronary syndrome, higher neutrophil count on admission and after revascularization correlates positively with major adverse cardiovascular disease outcomes. CONCLUSIONS: Our study provides novel evidence for the primary role of neutrophil-derived alarmins (S100A8/A9) in dictating the nature of the ensuing inflammatory response after myocardial injury. Therapeutic strategies aimed at disruption of S100A8/A9 signaling or their downstream mediators (eg, nod-like receptor family pyrin domain-containing 3 inflammasome, interleukin-1ß) in neutrophils suppress granulopoiesis and may improve cardiac function in patients with acute coronary syndrome.


Assuntos
Calgranulina A/metabolismo , Granulócitos/metabolismo , Infarto do Miocárdio/sangue , Neutrófilos/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos
15.
Magn Reson Med ; 85(5): 2359-2369, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33216412

RESUMO

PURPOSE: Gamma-aminobutyric acid (GABA) abnormalities have been implicated in a range of neuropsychiatric disorders. Despite substantial interest in probing GABA in vivo, human imaging studies relying on magnetic resonance spectroscopy (MRS) have generally been hindered by technical challenges, including GABA's relatively low concentration and spectral overlap with other metabolites. Although past studies have shown moderate-to-strong test-retest repeatability and reliability of GABA within certain brain regions, many of these studies have been limited by small sample sizes. METHODS: GABA+ (macromolecular-contaminated) test-retest reliability and repeatability were assessed via a Meshcher-Garwood point resolved spectroscopy (MEGA-PRESS) MRS sequence in the rostral anterior cingulate cortex (rACC; n = 21) and dorsolateral prefrontal cortex (dlPFC; n = 20) in healthy young adults. Data were collected on a 3T scanner (Siemens Prisma, Siemens Healthcare, Erlangen, Germany) and GABA+ results were reported in reference to both total creatine (GABA+/tCr) and water (GABA+/water). RESULTS: Results showed strong test-retest repeatability (mean GABA+/tCr coefficient of variation [CV] = 4.6%; mean GABA+/water CV = 4.0%) and reliability (GABA+/tCr intraclass correlation coefficient [ICC] = 0.77; GABA+/water ICC = 0.87) in the dlPFC. The rACC showed acceptable (but comparatively lower) repeatability (mean GABA+/tCr CV = 8.0%; mean GABA+/water CV = 7.5%), yet low-moderate reliability (GABA+/tCr ICC = 0.40; GABA+/water ICC = 0.44). CONCLUSION: The present study found excellent GABA+ MRS repeatability and reliability in the dlPFC. The rACC showed inferior results, possibly because of a combination of shimming impedance and measurement error. These data suggest that MEGA-PRESS can be utilized to reliably distinguish participants based on dlPFC GABA+ levels, whereas the mixed results in the rACC merit further investigation.


Assuntos
Imageamento por Ressonância Magnética , Ácido gama-Aminobutírico , Alemanha , Humanos , Espectroscopia de Ressonância Magnética , Reprodutibilidade dos Testes , Adulto Jovem
16.
CNS Spectr ; 26(5): 481-490, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32423512

RESUMO

OBJECTIVE: The aim of this fixed-dose study was to evaluate the efficacy and safety of dasotraline in the treatment of patients with binge-eating disorder (BED). METHODS: Patients meeting Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition criteria for BED were randomized to 12 weeks of double-blind treatment with fixed doses of dasotraline (4 and 6 mg/d), or placebo. The primary efficacy endpoint was change in number of binge-eating (BE) days per week at week 12. Secondary efficacy endpoints included week 12 change on the BE CGI-Severity Scale (BE-CGI-S) and the Yale-Brown Obsessive-Compulsive Scale Modified for BE (YBOCS-BE). RESULTS: At week 12, treatment with dasotraline was associated with significant improvement in number of BE days per week on the dose of 6 mg/d (N = 162) vs placebo (N = 162; -3.47 vs -2.92; P = .0045), but not 4 mg/d (N = 161; -3.21). Improvement vs placebo was observed for dasotraline 6 and 4 mg/d, respectively, on the BE-CGI-S (effect size [ES]: 0.37 and 0.27) and on the YBOCS-BE total score (ES: 0.43 and 0.29). The most common adverse events on dasotraline were insomnia, dry mouth, headache, decreased appetite, nausea, and anxiety. Changes in blood pressure and pulse were minimal. CONCLUSION: Treatment with dasotraline 6 mg/d (but not 4 mg/d) was associated with significantly greater reduction in BE days per week. Both doses of dasotraline were generally safe and well-tolerated and resulted in global improvement on the BE-CGI-S, as well as improvement in BE related obsessional thoughts and compulsive behaviors on the YBOCS-BE. These results confirm the findings of a previous flexible dose study.


Assuntos
1-Naftilamina/análogos & derivados , Bulimia/tratamento farmacológico , 1-Naftilamina/administração & dosagem , 1-Naftilamina/efeitos adversos , 1-Naftilamina/uso terapêutico , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Am J Addict ; 30(5): 423-432, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33870584

RESUMO

BACKGROUND AND OBJECTIVES: Anabolic-androgenic steroid (AAS) use has become a major worldwide substance use disorder, affecting tens of millions of individuals. Importantly, it is now increasingly recognized that some individuals develop uncharacteristically violent or criminal behaviors when using AAS. We sought to summarize available information on this topic. METHODS: We reviewed the published literature on AAS-induced behavioral effects and augmented this information with extensive observations from our clinical and forensic experience. RESULTS: It is now generally accepted that some AAS users develop uncharacteristically violent or criminal behaviors while taking these drugs. Although these behaviors may partially reflect premorbid psychopathology, sociocultural factors, or expectational effects, accumulating evidence suggests that they are also attributable to biological effects of AAS themselves. The mechanism of these effects remains speculative, but preliminary data suggest a possible role for brain regions involved in emotional reactivity, such as the amygdala and regions involved in cognitive control, including the frontal cortex. For unknown reasons, these effects appear idiosyncratic; most AAS users display few behavioral effects, but a minority develops severe effects. CONCLUSION AND SCIENTIFIC SIGNIFICANCE: Professionals encountering AAS users in clinical or forensic settings should be alert to the possibility of AAS-induced violence or criminality and should employ strategies to assess whether AAS is indeed a contributory factor in a given case. Further research is needed to elucidate the mechanism of AAS-induced violence and to explain why only a subset of AAS users appears vulnerable to these effects. (Am J Addict 2021;00:00-00).


Assuntos
Anabolizantes , Transtornos Relacionados ao Uso de Substâncias , Anabolizantes/efeitos adversos , Crime , Humanos , Esteroides , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Congêneres da Testosterona , Violência
18.
Development ; 144(6): 1118-1127, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28174241

RESUMO

The adult human heart possesses a limited regenerative potential following an ischemic event, and undergoes a number of pathological changes in response to injury. Although cardiac regeneration has been documented in zebrafish and neonatal mouse hearts, it is currently unknown whether the immature human heart is capable of undergoing complete regeneration. Combined progress in pluripotent stem cell differentiation and tissue engineering has facilitated the development of human cardiac organoids (hCOs), which resemble fetal heart tissue and can be used to address this important knowledge gap. This study aimed to characterize the regenerative capacity of immature human heart tissue in response to injury. Following cryoinjury with a dry ice probe, hCOs exhibited an endogenous regenerative response with full functional recovery 2 weeks after acute injury. Cardiac functional recovery occurred in the absence of pathological fibrosis or cardiomyocyte hypertrophy. Consistent with regenerative organisms and neonatal human hearts, there was a high basal level of cardiomyocyte proliferation, which may be responsible for the regenerative capacity of the hCOs. This study suggests that immature human heart tissue has an intrinsic capacity to regenerate.


Assuntos
Traumatismos Cardíacos/fisiopatologia , Coração/embriologia , Coração/fisiopatologia , Modelos Biológicos , Organoides/embriologia , Regeneração , Adulto , Morte Celular , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Congelamento , Testes de Função Cardíaca , Traumatismos Cardíacos/patologia , Humanos , Hipertrofia , Contração Miocárdica , Miocárdio/patologia , Miócitos Cardíacos/citologia , Organoides/ultraestrutura , Recuperação de Função Fisiológica
19.
Proc Natl Acad Sci U S A ; 114(40): E8372-E8381, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28916735

RESUMO

The mammalian heart undergoes maturation during postnatal life to meet the increased functional requirements of an adult. However, the key drivers of this process remain poorly defined. We are currently unable to recapitulate postnatal maturation in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), limiting their potential as a model system to discover regenerative therapeutics. Here, we provide a summary of our studies, where we developed a 96-well device for functional screening in human pluripotent stem cell-derived cardiac organoids (hCOs). Through interrogation of >10,000 organoids, we systematically optimize parameters, including extracellular matrix (ECM), metabolic substrate, and growth factor conditions, that enhance cardiac tissue viability, function, and maturation. Under optimized maturation conditions, functional and molecular characterization revealed that a switch to fatty acid metabolism was a central driver of cardiac maturation. Under these conditions, hPSC-CMs were refractory to mitogenic stimuli, and we found that key proliferation pathways including ß-catenin and Yes-associated protein 1 (YAP1) were repressed. This proliferative barrier imposed by fatty acid metabolism in hCOs could be rescued by simultaneous activation of both ß-catenin and YAP1 using genetic approaches or a small molecule activating both pathways. These studies highlight that human organoids coupled with higher-throughput screening platforms have the potential to rapidly expand our knowledge of human biology and potentially unlock therapeutic strategies.


Assuntos
Fatores Biológicos/metabolismo , Pontos de Checagem do Ciclo Celular , Miócitos Cardíacos/metabolismo , Organoides/metabolismo , Células-Tronco Pluripotentes/metabolismo , Regeneração/fisiologia , Adulto , Animais , Diferenciação Celular , Dano ao DNA , Humanos , Masculino , Miócitos Cardíacos/citologia , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Ratos Sprague-Dawley
20.
Curr Cardiol Rep ; 22(8): 73, 2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32594263

RESUMO

PURPOSE OF REVIEW: This review summarizes the important role that metabolism plays in driving maturation of human pluripotent stem cell-derived cardiomyocytes. RECENT FINDINGS: Human pluripotent stem cell-derived cardiomyocytes provide a model system for human cardiac biology. However, these models have been unable to fully recapitulate the maturity observed in the adult heart. By simulating the glucose to fatty acid transition observed in neonatal mammals, human pluripotent stem cell-derived cardiomyocytes undergo structural and functional maturation also accompanied by transcriptional changes and cell cycle arrest. The role of metabolism in energy production, signaling, and epigenetic modifications illustrates that metabolism and cellular phenotype are intimately linked. Further understanding of key metabolic factors driving cardiac maturation will facilitate the generation of more mature human pluripotent stem cell-derived cardiomyocyte models. This will increase our understanding of cardiac biology and potentially lead to novel therapeutics to enhance heart function.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Adulto , Animais , Diferenciação Celular , Humanos , Miócitos Cardíacos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA