Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
JMIR Mhealth Uhealth ; 12: e54669, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963698

RESUMO

BACKGROUND: Climate change increasingly impacts health, particularly of rural populations in sub-Saharan Africa due to their limited resources for adaptation. Understanding these impacts remains a challenge, as continuous monitoring of vital signs in such populations is limited. Wearable devices (wearables) present a viable approach to studying these impacts on human health in real time. OBJECTIVE: The aim of this study was to assess the feasibility and effectiveness of consumer-grade wearables in measuring the health impacts of weather exposure on physiological responses (including activity, heart rate, body shell temperature, and sleep) of rural populations in western Kenya and to identify the health impacts associated with the weather exposures. METHODS: We conducted an observational case study in western Kenya by utilizing wearables over a 3-week period to continuously monitor various health metrics such as step count, sleep patterns, heart rate, and body shell temperature. Additionally, a local weather station provided detailed data on environmental conditions such as rainfall and heat, with measurements taken every 15 minutes. RESULTS: Our cohort comprised 83 participants (42 women and 41 men), with an average age of 33 years. We observed a positive correlation between step count and maximum wet bulb globe temperature (estimate 0.06, SE 0.02; P=.008). Although there was a negative correlation between minimum nighttime temperatures and heat index with sleep duration, these were not statistically significant. No significant correlations were found in other applied models. A cautionary heat index level was recorded on 194 (95.1%) of 204 days. Heavy rainfall (>20 mm/day) occurred on 16 (7.8%) out of 204 days. Despite 10 (21%) out of 47 devices failing, data completeness was high for sleep and step count (mean 82.6%, SD 21.3% and mean 86.1%, SD 18.9%, respectively), but low for heart rate (mean 7%, SD 14%), with adult women showing significantly higher data completeness for heart rate than men (2-sided t test: P=.003; Mann-Whitney U test: P=.001). Body shell temperature data achieved 36.2% (SD 24.5%) completeness. CONCLUSIONS: Our study provides a nuanced understanding of the health impacts of weather exposures in rural Kenya. Our study's application of wearables reveals a significant correlation between physical activity levels and high temperature stress, contrasting with other studies suggesting decreased activity in hotter conditions. This discrepancy invites further investigation into the unique socioenvironmental dynamics at play, particularly in sub-Saharan African contexts. Moreover, the nonsignificant trends observed in sleep disruption due to heat expose the need for localized climate change mitigation strategies, considering the vital role of sleep in health. These findings emphasize the need for context-specific research to inform policy and practice in regions susceptible to the adverse health effects of climate change.


Assuntos
Temperatura Alta , População Rural , Dispositivos Eletrônicos Vestíveis , Humanos , Quênia/epidemiologia , Dispositivos Eletrônicos Vestíveis/estatística & dados numéricos , Dispositivos Eletrônicos Vestíveis/normas , Feminino , Masculino , Adulto , População Rural/estatística & dados numéricos , Temperatura Alta/efeitos adversos , Pessoa de Meia-Idade , Frequência Cardíaca/fisiologia , Estudos de Coortes , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Avaliação de Resultados em Cuidados de Saúde/métodos
2.
JMIR Mhealth Uhealth ; 11: e46980, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938879

RESUMO

BACKGROUND: Extreme weather, including heat and extreme rainfall, is projected to increase owing to climate change, which can have adverse impacts on human health. In particular, rural populations in sub-Saharan Africa are at risk because of a high burden of climate-sensitive diseases and low adaptive capacities. However, there is a lack of data on the regions that are anticipated to be most exposed to climate change. Improved public health surveillance is essential for better decision-making and health prioritization and to identify risk groups and suitable adaptation measures. Digital technologies such as consumer-grade wearable devices (wearables) may generate objective measurements to guide data-driven decision-making. OBJECTIVE: The main objective of this observational study was to examine the impact of weather exposure on population health in rural Burkina Faso using wearables. Specifically, this study aimed to assess the relationship between individual daily activity (steps), sleep duration, and heart rate (HR), as estimated by wearables, and exposure to heat and heavy rainfall. METHODS: Overall, 143 participants from the Nouna health and demographic surveillance system in Burkina Faso wore the Withings Pulse HR wearable 24/7 for 11 months. We collected continuous weather data using 5 weather stations throughout the study region. The heat index and wet-bulb globe temperature (WBGT) were calculated as measures of heat. We used linear mixed-effects models to quantify the relationship between exposure to heat and rainfall and the wearable parameters. Participants kept activity journals and completed a questionnaire on their perception of and adaptation to heat and other weather exposure. RESULTS: Sleep duration decreased significantly (P<.001) with higher heat exposure, with approximately 15 minutes shorter sleep duration during heat stress nights with a heat index value of ≥25 °C. Many participants (55/137, 40.1%) reported that heat affected them the most at night. During the day, most participants (133/137, 97.1%) engaged in outdoor physical work such as farming, housework, or fetching water. During the rainy season, when WBGT was highest, daily activity was highest and increased when the daily maximum WBGT surpassed 30 °C during the rainiest month. In the hottest month, daily activity decreased per degree increase in WBGT for values >30 °C. Nighttime HR showed no significant correlation with heat exposure. Daytime HR data were insufficient for analysis. We found no negative health impact associated with heavy rainfall. With increasing rainfall, sleep duration increased, average nightly HR decreased, and activity decreased. CONCLUSIONS: During the study period, participants were frequently exposed to heat and heavy rainfall. Heat was particularly associated with impaired sleep and daily activity. Essential tasks such as harvesting, fetching water, and caring for livestock expose this population to weather that likely has an adverse impact on their health. Further research is essential to guide interventions safeguarding vulnerable communities.


Assuntos
Clima Extremo , Saúde da População , Humanos , Burkina Faso/epidemiologia , População Rural , Água
3.
Front Public Health ; 10: 972177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249225

RESUMO

Background: Wearable devices may generate valuable data for global health research for low- and middle-income countries (LMICs). However, wearable studies in LMICs are scarce. This study aims to investigate the use of consumer-grade wearables to generate individual-level data in vulnerable populations in LMICs, focusing on the acceptability (quality of the devices being accepted or even liked) and feasibility (the state of being workable, realizable, and practical, including aspects of data completeness and plausibility). Methods: We utilized a mixed-methods approach within the health and demographic surveillance system (HDSS) to conduct a case study in Nouna, Burkina Faso (BF). All HDSS residents older than 6 years were eligible. N = 150 participants were randomly selected from the HDSS database to wear a wristband tracker (Withings Pulse HR) and n = 69 also a thermometer patch (Tucky thermometer) for 3 weeks. Every 4 days, a trained field worker conducted an acceptability questionnaire with participants, which included questions for the field workers as well. Descriptive and qualitative thematic analyses were used to analyze the responses of study participants and field workers. Results: In total, n = 148 participants were included (and n = 9 field workers). Participant's acceptability ranged from 94 to 100% throughout the questionnaire. In 95% of the cases (n = 140), participants reported no challenges with the wearable. Most participants were not affected by the wearable in their daily activities (n = 122, 83%) and even enjoyed wearing them (n = 30, 20%). Some were concerned about damage to the wearables (n = 7, 5%). Total data coverage (i.e., the proportion of the whole 3-week study duration covered by data) was 43% for accelerometer (activity), 3% for heart rate, and 4% for body shell temperature. Field workers reported technical issues like faulty synchronization (n = 6, 1%). On average, participants slept 7 h (SD 3.2 h) and walked 8,000 steps per day (SD 5573.6 steps). Acceptability and data completeness were comparable across sex, age, and study arms. Conclusion: Wearable devices were well-accepted and were able to produce continuous measurements, highlighting the potential for wearables to generate large datasets in LMICs. Challenges constituted data missingness mainly of technical nature. To our knowledge, this is the first study to use consumer-focused wearables to generate objective datasets in rural BF.


Assuntos
Dispositivos Eletrônicos Vestíveis , Burkina Faso/epidemiologia , Humanos , População Rural , Inquéritos e Questionários
4.
JMIR Mhealth Uhealth ; 10(1): e34384, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076409

RESUMO

BACKGROUND: Wearable devices hold great promise, particularly for data generation for cutting-edge health research, and their demand has risen substantially in recent years. However, there is a shortage of aggregated insights into how wearables have been used in health research. OBJECTIVE: In this review, we aim to broadly overview and categorize the current research conducted with affordable wearable devices for health research. METHODS: We performed a scoping review to understand the use of affordable, consumer-grade wearables for health research from a population health perspective using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) framework. A total of 7499 articles were found in 4 medical databases (PubMed, Ovid, Web of Science, and CINAHL). Studies were eligible if they used noninvasive wearables: worn on the wrist, arm, hip, and chest; measured vital signs; and analyzed the collected data quantitatively. We excluded studies that did not use wearables for outcome assessment and prototype studies, devices that cost >€500 (US $570), or obtrusive smart clothing. RESULTS: We included 179 studies using 189 wearable devices covering 10,835,733 participants. Most studies were observational (128/179, 71.5%), conducted in 2020 (56/179, 31.3%) and in North America (94/179, 52.5%), and 93% (10,104,217/10,835,733) of the participants were part of global health studies. The most popular wearables were fitness trackers (86/189, 45.5%) and accelerometer wearables, which primarily measure movement (49/189, 25.9%). Typical measurements included steps (95/179, 53.1%), heart rate (HR; 55/179, 30.7%), and sleep duration (51/179, 28.5%). Other devices measured blood pressure (3/179, 1.7%), skin temperature (3/179, 1.7%), oximetry (3/179, 1.7%), or respiratory rate (2/179, 1.1%). The wearables were mostly worn on the wrist (138/189, 73%) and cost <€200 (US $228; 120/189, 63.5%). The aims and approaches of all 179 studies revealed six prominent uses for wearables, comprising correlations-wearable and other physiological data (40/179, 22.3%), method evaluations (with subgroups; 40/179, 22.3%), population-based research (31/179, 17.3%), experimental outcome assessment (30/179, 16.8%), prognostic forecasting (28/179, 15.6%), and explorative analysis of big data sets (10/179, 5.6%). The most frequent strengths of affordable wearables were validation, accuracy, and clinical certification (104/179, 58.1%). CONCLUSIONS: Wearables showed an increasingly diverse field of application such as COVID-19 prediction, fertility tracking, heat-related illness, drug effects, and psychological interventions; they also included underrepresented populations, such as individuals with rare diseases. There is a lack of research on wearable devices in low-resource contexts. Fueled by the COVID-19 pandemic, we see a shift toward more large-sized, web-based studies where wearables increased insights into the developing pandemic, including forecasting models and the effects of the pandemic. Some studies have indicated that big data extracted from wearables may potentially transform the understanding of population health dynamics and the ability to forecast health trends.


Assuntos
COVID-19 , Dispositivos Eletrônicos Vestíveis , Monitores de Aptidão Física , Humanos , Pandemias , SARS-CoV-2
5.
JMIR Mhealth Uhealth ; 10(9): e39532, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36083624

RESUMO

BACKGROUND: Although climate change is one of the biggest global health threats, individual-level and short-term data on direct exposure and health impacts are still scarce. Wearable electronic devices (wearables) present a potential solution to this research gap. Wearables have become widely accepted in various areas of health research for ecological momentary assessment, and some studies have used wearables in the field of climate change and health. However, these studies vary in study design, demographics, and outcome variables, and existing research has not been mapped. OBJECTIVE: In this review, we aimed to map existing research on wearables used to detect direct health impacts and individual exposure during climate change-induced weather extremes, such as heat waves or wildfires. METHODS: We conducted a scoping review according to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) framework and systematically searched 6 databases (PubMed [MEDLINE], IEEE Xplore, CINAHL [EBSCOhost], WoS, Scopus, Ovid [MEDLINE], and Google Scholar). The search yielded 1871 results. Abstracts and full texts were screened by 2 reviewers (MK and IM) independently using the inclusion and exclusion criteria. The inclusion criteria comprised studies published since 2010 that used off-the-shelf wearables that were neither invasive nor obtrusive to the user in the setting of climate change-related weather extremes. Data were charted using a structured form, and the study outcomes were narratively synthesized. RESULTS: The review included 55,284 study participants using wearables in 53 studies. Most studies were conducted in upper-middle-income and high-income countries (50/53, 94%) in urban environments (25/53, 47%) or in a climatic chamber (19/53, 36%) and assessed the health effects of heat exposure (52/53, 98%). The majority reported adverse health effects of heat exposure on sleep, physical activity, and heart rate. The remaining studies assessed occupational heat stress or compared individual- and area-level heat exposure. In total, 26% (14/53) of studies determined that all examined wearables were valid and reliable for measuring health parameters during heat exposure when compared with standard methods. CONCLUSIONS: Wearables have been used successfully in large-scale research to measure the health implications of climate change-related weather extremes. More research is needed in low-income countries and vulnerable populations with pre-existing conditions. In addition, further research could focus on the health impacts of other climate change-related conditions and the effectiveness of adaptation measures at the individual level to such weather extremes.


Assuntos
Mudança Climática , Dispositivos Eletrônicos Vestíveis , Exercício Físico , Humanos , Sono , Tempo (Meteorologia)
6.
PLoS One ; 16(9): e0257170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34591893

RESUMO

As the epidemiological transition progresses throughout sub-Saharan Africa, life lived with diseases is an increasingly important part of a population's burden of disease. The burden of disease of climate-sensitive health outcomes is projected to increase considerably within the next decades. Objectively measured, reliable population health data is still limited and is primarily based on perceived illness from recall. Technological advances like non-invasive, consumer-grade wearable devices may play a vital role in alleviating this data gap and in obtaining insights on the disease burden in vulnerable populations, such as heat stress on human cardiovascular response. The overall goal of this study is to investigate whether consumer-grade wearable devices are an acceptable, feasible and valid means to generate data on the individual level in low-resource contexts. Three hundred individuals are recruited from the two study locations in the Nouna health and demographic surveillance system (HDSS), Burkina Faso, and the Siaya HDSS, Kenya. Participants complete a structured questionnaire that comprises question items on acceptability and feasibility under the supervision of trained data collectors. Validity will be evaluated by comparing consumer-grade wearable devices to research-grade devices. Furthermore, we will collect demographic data as well as the data generated by wearable devices. This study will provide insights into the usage of consumer-grade wearable devices to measure individual vital signs in low-resource contexts, such as Burkina Faso and Kenya. Vital signs comprising activity (steps), sleep (duration, quality) and heart rate (hr) are important measures to gain insights on individual behavior and activity patterns in low-resource contexts. These vital signs may be associated with weather variables-as we gather them from weather stations that we have setup as part of this study to cover the whole Nouna and Siaya HDSSs-in order to explore changes in behavior and other variables, such as activity, sleep, hr, during extreme weather events like heat stress exposure. Furthermore, wearable data could be linked to health outcomes and weather events. As a result, consumer-grade wearables may serve as a supporting technology for generating reliable measurements in low-resource contexts and investigating key links between weather occurrences and health outcomes. Thus, wearable devices may provide insights to better inform mitigation and adaptation interventions in these low-resource settings that are direly faced by climate change-induced changes, such as extreme weather events.


Assuntos
Mudança Climática , Recursos em Saúde , Saúde , Pesquisa , Dispositivos Eletrônicos Vestíveis , Adolescente , Adulto , Burkina Faso , Criança , Estudos de Viabilidade , Feminino , Humanos , Quênia , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA