RESUMO
PURPOSE: Positron emission tomography imaging of zirconium-89-labelled monoclonal antibodies (89Zr-Immuno-PET) allows for visualisation and quantification of antibody uptake in tumours in vivo. Patlak linearization provides distribution volume (VT) and nett influx rate (Ki) values, representing reversible and irreversible uptake, respectively. Standardised uptake value (SUV) and tumour-to-plasma/tumour-to-blood ratio (TPR/TBR) are often used, but their validity depends on the comparability of plasma kinetics and clearances. This study assesses the validity of SUV, TPR and TBR against Patlak Ki for quantifying irreversible 89Zr-Immuno-PET uptake in tumours. METHODS: Ten patients received 37 MBq 10 mg 89Zr-anti-EGFR with 500 mg/m2 unlabelled mAbs. Five patients received two doses of 37 MBq 89Zr-anti-HER3: 8-24 mg for the first administration and 24 mg-30 mg/kg for the second. Seven tumours from four patients showed 89Zr-anti-EGFR uptake, and 18 tumours from five patients showed 89Zr-anti-HER3 uptake. SUVpeak, TPRpeak and TBRpeak values were obtained from one to six days p.i. Patlak linearization was applied to tumour time activity curves and plasma samples to obtain Ki. RESULTS: For 89Zr-anti-EGFR, there was a small variability along the linear regression line between SUV (- 0.51-0.57), TPR (- 0.06â0.11) and TBR (- 0.13â0.16) on day 6 versus Ki. Similar doses of 89Zr-anti-HER3 showed similar variability for SUV (- 1.3â1.0), TPR (- 1.1â0.53) and TBR (- 1.5â0.72) on day 5 versus Ki. However, for the second administration of 89Zr-anti-HER3 with a large variability in administered mass doses, SUV showed a larger variability (- 1.4â2.3) along the regression line with Ki, which improved when using TPR (- 0.38-0.32) or TBR (- 0.56â0.46). CONCLUSION: SUV, TPR and TBR at late time points were valid for quantifying irreversible lesional 89Zr-Immuno-PET uptake when constant mass doses were administered. However, for variable mass doses, only TPR and TBR provided reliable values for irreversible uptake, but not SUV, because SUV does not take patient and mass dose-specific plasma clearance into account.
Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Anticorpos Monoclonais , Cinética , ZircônioRESUMO
PURPOSE: Although lymphocyte activation gene-3 (LAG-3) directed therapies demonstrate promising clinical anti-cancer activity, only a subset of patients seems to benefit and predictive biomarkers are lacking. Here, we explored the potential use of the anti-LAG-3 antibody tracer [89Zr]Zr-BI 754111 as a predictive imaging biomarker and investigated its target specific uptake as well as the correlation of its tumor uptake and the tumor immune infiltration. METHODS: Patients with head and neck (N = 2) or lung cancer (N = 4) were included in an imaging substudy of a phase 1 trial with BI 754091 (anti-PD-1) and BI 754111 (anti-LAG-3). After baseline tumor biopsy and [18F]FDG-PET, patients were given 240 mg of BI 754091, followed 8 days later by administration of [89Zr]Zr-BI 754111 (37 MBq, 4 mg). PET scans were performed 2 h, 96 h, and 144 h post-injection. To investigate target specificity, a second tracer administration was given two weeks later, this time with pre-administration of 40 (N = 3) or 600 mg (N = 3) unlabeled BI 754111, followed by PET scans at 96 h and 144 h post-injection. Tumor immune cell infiltration was assessed by immunohistochemistry and RNA sequencing. RESULTS: Tracer uptake in tumors was clearly visible at the 4-mg mass dose (tumor-to-plasma ratio 1.63 [IQR 0.37-2.89]) and could be saturated by increasing mass doses (44 mg: 0.67 [IQR 0.50-0.85]; 604 mg: 0.56 [IQR 0.42-0.75]), demonstrating target specificity. Tumor uptake correlated to immune cell-derived RNA signatures. CONCLUSIONS: [89Zr]Zr-BI-754111 PET imaging shows favorable technical and biological characteristics for developing a potential predictive imaging biomarker for LAG-3-directed therapies. TRIAL REGISTRATION: ClinicalTrials.gov , NCT03780725. Registered 19 December 2018.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias de Cabeça e Pescoço , Neoplasias Pulmonares , Humanos , Radioisótopos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Tomografia por Emissão de Pósitrons/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Zircônio , Linhagem Celular TumoralRESUMO
PURPOSE: In-vivo quantification of tumor uptake of 89-zirconium (89Zr)-labelled monoclonal antibodies (mAbs) with PET provides a potential tool in strategies to optimize tumor targeting and therapeutic efficacy. A specific challenge for 89Zr-immuno-PET is low tumor contrast. This is expected to result in interobserver variation in tumor delineation. Therefore, the aim of this study was to determine interobserver reproducibility of tumor uptake measures by tumor delineation on 89Zr-immuno-PET scans. METHODS: Data were obtained from previously published clinical studies performed with 89Zr-rituximab, 89Zr-cetuximab and 89Zr-trastuzumab. Tumor lesions on 89Zr-immuno-PET were identified as focal uptake exceeding local background by a nuclear medicine physician. Three observers independently manually delineated volumes of interest (VOI). Maximum, peak and mean standardized uptake values (SUVmax, SUVpeak and SUVmean) were used to quantify tumor uptake. Interobserver variability was expressed as the coefficient of variation (CoV). The performance of semi-automatic VOI delineation using 50% of background-corrected ACpeak was described. RESULTS: In total, 103 VOI were delineated (3-6 days post injection (D3-D6)). Tumor uptake (median, interquartile range) was 9.2 (5.2-12.6), 6.9 (4.0-9.6) and 5.5 (3.3-7.8) for SUVmax, SUVpeak and SUVmean. Interobserver variability was 0% (0-12), 0% (0-2) and 7% (5-14), respectively (n = 103). The success rate of the semi-automatic method was 45%. Inclusion of background was the main reason for failure of semi-automatic VOI. CONCLUSIONS: This study shows that interobserver reproducibility of tumor uptake quantification on 89Zr-immuno-PET was excellent for SUVmax and SUVpeak using a standardized manual procedure for tumor segmentation. Semi-automatic delineation was not robust due to limited tumor contrast.
Assuntos
Anticorpos Monoclonais/metabolismo , Linfoma de Células B/diagnóstico por imagem , Linfoma de Células B/metabolismo , Tomografia por Emissão de Pósitrons , Radioisótopos , Zircônio , Adulto , Idoso , Transporte Biológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Estudos RetrospectivosRESUMO
Antibody fragment F8-mediated interleukin 10 (IL10) delivery is a novel treatment for rheumatoid arthritis (RA). F8 binds to the extra-domain-A of fibronectin (ED-A). In this study, in vivo biodistribution and arthritis targeting of radiolabeled F8-IL10 were investigated in RA patients, followed by further animal studies. Therefore, three RA patients (DAS28 > 3.2) received 0.4 mg of 30-74 megabecquerel [124I]I-F8-IL10 for PET-CT and blood sampling. In visually identified PET-positive joints, target-to-background was calculated. Healthy mice, rats, and arthritic rats were injected with iodinated F8-IL10 or KSF-IL10 control antibody. Various organs were excised, weighed, and counted for radioactivity. Tissue sections were stained for fibronectin ED-A. In RA patients, [124I]I-F8-IL10 was cleared rapidly from the circulation with less than 1% present in blood after 5 min. PET-CT showed targeting in 38 joints (11-15 per patient) and high uptake in the liver and spleen. Mean target-to-background ratios of PET-positive joints were 2.5 ± 1.2, 1.5 times higher for clinically active than clinically silent joints. Biodistribution of radioiodinated F8-IL10 in healthy mice showed no effect of the radioiodination method. [124I]I-F8-IL10 joint uptake was also demonstrated in arthritic rats, â¼14-fold higher than that of the control antibody [124I]I-KSF-IL10 ( p < 0.001). Interestingly, liver and spleen uptake were twice as high in arthritic than in healthy rats and were related to increased (â¼7×) fibronectin ED-A expression in these tissues. In conclusion, [124I]I-F8-IL10 uptake was observed in arthritic joints in RA patients holding promise for visualization of inflamed joints by PET-CT imaging and therapeutic targeting. Patient observations and, subsequently, arthritic animal studies pointed to awareness of increased [124I]I-F8-IL10 uptake in the liver and spleen associated with moderate systemic inflammation. This translational study demonstrated the value of in vivo biodistribution and PET-CT-guided imaging in development of new and potential antirheumatic drugs'.
Assuntos
Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/metabolismo , Interleucina-10/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais Humanizados , Antirreumáticos/farmacocinética , Antirreumáticos/uso terapêutico , Humanos , Interleucina-10/genética , Fígado/metabolismo , Masculino , Camundongos , Ratos , Baço/metabolismoRESUMO
BACKGROUND: Mismatch between myocardial innervation and perfusion assessed with positron emission tomography (PET) is a potential risk marker for ventricular arrhythmias in patients with ischemic cardiomyopathy. This mismatch zone originates from residual viable myocardium that has sustained ischemic nerve injury. Heterogenic scar size assessed with late gadolinium-enhanced (LGE) cardiac magnetic resonance imaging (CMR) is also a risk marker of ventricular arrhythmias. These two imaging parameters may represent identical morphological tissue features. The current study explored the relation between innervation-perfusion mismatch and heterogenic scar size. METHODS: Twenty-eight patients (26 males, age 67 ± 8 years) with ischemic cardiomyopathy and a left ventricular ejection fraction below 35%, eligible for ICD implantation were included. All patients underwent both [11C]-hydroxyephedrine and [15O]-water PET studies to assess myocardial sympathetic innervation and perfusion. LGE CMR was conducted to assess total myocardial scar size, scar core size, and heterogenic scar size. RESULTS: Perfusion defect size was 16.6 ± 9.9% and innervation defect size was 33.7 ± 10.8%, which resulted in an innervation-perfusion mismatch of 17.6 ± 8.9%. Total scar size, scar core size, and heterogenic scar size were 21.2 ± 8.6%, 14.7 ± 6.6%, and 6.5 ± 2.9%, respectively. No relation between scar core size and perfusion deficit size was observed (r = 0.18, P = .36). Total scar size was correlated with the innervation defect size (r = 0.52, P = .004) and the heterogenic scar zone displayed a significant correlation with the innervation-perfusion mismatch area (r = 0.67, P < .001). CONCLUSIONS: Denerved residual viable myocardium in ischemic cardiomyopathy as observed with innervation-perfusion PET is related to the heterogenic scar zone as assessed with LGE CMR.
Assuntos
Cardiomiopatias/diagnóstico por imagem , Cicatriz/diagnóstico por imagem , Coração/diagnóstico por imagem , Coração/inervação , Imagem Cinética por Ressonância Magnética/métodos , Isquemia Miocárdica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Idoso , Cardiomiopatias/complicações , Cicatriz/etiologia , Denervação , Feminino , Humanos , Masculino , Isquemia Miocárdica/complicações , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
PURPOSE: To compare cerebral blood flow (CBF) values measured using magnetic resonance imaging (MRI) arterial spin labeling (ASL) with those obtained with [(15)O]H2O positron emission tomography (PET), the gold standard for measuring CBF in vivo. MATERIALS AND METHODS: Data were collected in 11 healthy men and in 20 age- and body mass index (BMI)-matched type 1 diabetic men. Pseudo-continuous ASL (PCASL) data were acquired at 3 T and [(15)O]H2O PET scans were acquired using a high-resolution PET scanner. Input functions were obtained using on-line arterial blood sampling. Whole brain and regional CBF values were compared. RESULTS: For both modalities, whole brain CBF was similar in both subject groups. In groups combined, average whole brain CBF was 0.30 ± 0.05 mL · cm(-3) · min(-1) for [(15)O]H2O PET and 0.34 ± 0.05 mL · cm(-3) · min(-1) for ASL MRI (P < 0.01). A significant correlation between methods was observed for whole brain, gray and white matter. In 12 out of 33 brain regions a significant difference between methods was observed. CONCLUSION: PCASL provides CBF values that correlate with [(15)O]H2O PET-derived values, but is less accurate. PCASL may be an attractive alternative when absolute quantification is not needed.
Assuntos
Velocidade do Fluxo Sanguíneo , Circulação Cerebrovascular , Transtornos Cerebrovasculares/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Angiografia por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Adolescente , Adulto , Transtornos Cerebrovasculares/diagnóstico por imagem , Transtornos Cerebrovasculares/patologia , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Diabetes Mellitus Tipo 1/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Oximetria/métodos , Radioisótopos de Oxigênio , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de Spin , Água , Adulto JovemRESUMO
Immune-based treatment approaches are successfully used for the treatment of patients with cancer. While such therapies can be highly effective, many patients fail to benefit. To provide optimal therapy choices and to predict treatment responses, reliable biomarkers for the assessment of immune features in patients with cancer are of significant importance. Biomarkers (BM) that enable a comprehensive and repeatable assessment of the tumor microenvironment (TME), the lymphoid system, and the dynamics induced by drug treatment can fill this gap. Medical imaging, notably positron emission tomography (PET) and magnetic resonance imaging (MRI), providing whole-body imaging BMs, might deliver such BMs. However, those imaging BMs must be well characterized as being 'fit for purpose' for the intended use. This review provides an overview of the key steps involved in the development of 'fit-for-purpose' imaging BMs applicable in drug development, with a specific focus on pharmacodynamic biomarkers for assessing the TME and its modulation by immunotherapy. The importance of the qualification of imaging BMs according to their context of use (COU) as defined by the Food and Drug Administration (FDA) and National Institutes of Health Biomarkers, EndpointS, and other Tools (BEST) glossary is highlighted. We elaborate on how an imaging BM qualification for a specific COU can be achieved.
RESUMO
INTRODUCTION: Immune checkpoint inhibitors (ICIs) can elicit anticancer immune responses, but predictive biomarkers are needed. We measured programmed death ligand 1 (PD-L1) expression in organs and lymph nodes using 18F-BMS-986192 positron emission tomography (PET)-imaging and looked for correlations with response and immune-related adverse events. METHODS: Four 18F-BMS-986192 PET studies in patients with melanoma, lung, pancreatic and oral cancer, receiving ICI treatment, were combined. Imaging data (organ standardized uptake value (SUV)mean, lymph node SUVmax) and clinical data (response to treatment and incidence of immune-related adverse events) were extracted. RESULTS: Baseline PD-L1 uptake in the spleen was on average higher in non-responding patients than in responders (spleen SUVmean 16.1±4.4 vs 12.5±3.4, p=0.02). This effect was strongest in lung cancer, and not observed in oral cancer. In the oral cancer cohort, benign tumor-draining lymph nodes (TDLNs) had higher PD-L1 uptake (SUVmax 3.3 IQR 2.5-3.9) compared with non-TDLNs (SUVmax 1.8, IQR 1.4-2.8 p=0.04). Furthermore, in the same cohort non-responders showed an increase in PD-L1 uptake in benign TDLNs on-treatment with ICIs (+15%), while for responders the PD-L1 uptake decreased (-11%). PD-L1 uptake did not predict immune-related adverse events, though elevated thyroid uptake on-treatment correlated with pre-existing thyroid disease or toxicity. CONCLUSION: PD-L1 PET uptake in the spleen is a potential negative predictor of response to ICIs. On-treatment with ICIs, PD-L1 uptake in benign TDLNs increases in non-responders, while it decreases in responders, potentially indicating a mechanism for resistance to ICIs in patients with oral cancer.
Assuntos
Antígeno B7-H1 , Linfonodos , Tomografia por Emissão de Pósitrons , Humanos , Antígeno B7-H1/metabolismo , Linfonodos/metabolismo , Linfonodos/patologia , Linfonodos/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Masculino , Feminino , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/diagnóstico por imagem , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Pessoa de Meia-Idade , IdosoRESUMO
BACKGROUND: Distribution of mAbs into tumour tissue may occur via different processes contributing differently to the 89Zr-mAb uptake on PET. Target-specific binding in tumours is of main interest; however, non-specific irreversible uptake may also be present, which influences quantification. The aim was to investigate the presence of non-specific irreversible uptake in tumour tissue using Patlak linearization on 89Zr-immuno-PET data of biopsy-proven target-negative tumours. Data of two studies, including target status obtained from biopsies, were retrospectively analysed, and Patlak linearization provided the net rate of irreversible uptake (Ki). RESULTS: Two tumours were classified as CD20-negative and two as CD20-positive. Four tumours were classified as CEA-negative and nine as CEA-positive. Ki values of CD20-negative (0.43 µL/g/h and 0.92 µL/g/h) and CEA-negative tumours (mdn = 1.97 µL/g/h, interquartile range (IQR) = 1.50-2.39) were higher than zero. Median Ki values of target-negative tumours were lower than CD20-positive (1.87 µL/g/h and 1.90 µL/g/h) and CEA-positive tumours (mdn = 2.77 µL/g/h, IQR = 2.11-3.65). CONCLUSION: Biopsy-proven target-negative tumours showed irreversible uptake of 89Zr-mAbs measured in vivo using 89Zr-immuno-PET data, which suggests the presence of non-specific irreversible uptake in tumours. Consequently, for 89Zr-immuno-PET, even if the target is absent, a tumour-to-plasma ratio always increases over time.
RESUMO
BACKGROUND: PET scans using zirconium-89 labelled monoclonal antibodies (89Zr-mAbs), known as 89Zr-immuno-PET, are made to measure uptake in tumour and organ tissue. Uptake is related to the supply of 89Zr-mAbs in the blood. Measuring activity concentrations in blood, however, requires invasive blood sampling. This study aims to identify the best delineation strategy to obtain the image-derived blood concentration (IDBC) from 89Zr-immuno-PET scans. METHODS: PET imaging and blood sampling of two 89Zr-mAbs were included, 89Zr-cetuximab and 89Zr-durvalumab. For seven patients receiving 89Zr-cetuximab, PET scans on 1-2 h, 2 and 6 days post-injection (p.i.) were analysed. Five patients received three injections of 89Zr-durvalumab. The scanning protocol for the first two injections consisted of PET scanning on 2, 5 and 7 days p.i. and for the third injection only on 7 days p.i. Blood samples were drawn with every PET scan and the sample-derived blood concentration (SDBC) was used as gold standard for the IDBC. According to an in-house developed standard operating procedure, the aortic arch, ascending aorta, descending aorta and left ventricle were delineated. Bland-Altman analyses were performed to assess the bias (mean difference) and variability (1.96 times the standard deviation of the differences) between IDBC and SDBC. RESULTS: Overall, the activity concentration obtained from the IDBC was lower than from the SDBC. When comparing IDBC with SDBC, variability was smallest for the ascending aorta (20.3% and 17.0% for 89Zr-cetuximab and 89Zr-durvalumab, respectively). Variability for the other regions ranged between 17.9 and 30.8%. Bias for the ascending aorta was - 10.9% and - 11.4% for 89Zr-cetuximab and 89Zr-durvalumab, respectively. CONCLUSIONS: Image-derived blood concentrations should be obtained from delineating the ascending aorta in 89Zr-immuno-PET scans, as this results in the lowest variability with respect to sample-derived blood concentrations.
RESUMO
BACKGROUND: In patients with locally advanced unresectable non-small cell lung cancer (NSCLC), durvalumab, an anti-programmed cell death ligand-1 (PD-L1) antibody, has shown improved overall survival when used as consolidation therapy following concurrent chemoradiotherapy (CRT). However, it is unclear whether CRT itself upregulates PD-L1 expression. Therefore, this study aimed to explore the changes in the uptake of the anti PD-L1 antibody [89Zr]Zr-durvalumab in tumors and healthy organs during CRT in patients with NSCLC. METHODS: Patients with NSCLC scheduled to undergo CRT were scanned 7±1 days after administration of 37±1 MBq [89Zr]Zr-durvalumab at baseline, 1-week on-treatment and 1 week after finishing 6 weeks of CRT. First, [89Zr]Zr-durvalumab uptake was visually assessed in a low dose cohort with a mass dose of 2 mg durvalumab (0.13% of therapeutic dose) and subsequently, quantification was done in a high dose cohort with a mass dose of 22.5 mg durvalumab (1.5% of therapeutic dose). Tracer pharmacokinetics between injections were compared using venous blood samples drawn in the 22.5 mg cohort. Visual assessment included suspected lesion detectability. Positron emission tomography (PET) uptake in tumoral and healthy tissues was quantified using tumor to plasma ratio (TPR) and organ to plasma ratio, respectively. RESULTS: In the 2 mg dose cohort, 88% of the 17 identified tumor lesions were positive at baseline, compared with 69% (9/13) for the 22.5 mg cohort. Although the absolute plasma concentrations between patients varied, the intrapatient variability was low. The ten quantitatively assessed lesions in the 22.5 mg cohort had a median TPR at baseline of 1.3 (IQR 0.7-1.5), on-treatment of 1.0 (IQR 0.7-1.4) and at the end of treatment of 0.7 (IQR 0.6-0.7). On-treatment, an increased uptake in bone marrow was seen in three out of five patients together with a decreased uptake in the spleen in four out of five patients. CONCLUSIONS: This study successfully imaged patients with NSCLC with [89Zr]Zr-durvalumab PET before and during CRT. Our data did not show any increase in [89Zr]Zr-durvalumab uptake in the tumor 1-week on-treatment and at the end of treatment. The changes observed in bone marrow and spleen may be due to an CRT-induced effect on immune cells. TRIAL REGISTRATION NUMBER: EudraCT number: 2019-004284-51.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Antígeno B7-H1/metabolismo , Tomografia por Emissão de Pósitrons/métodos , QuimiorradioterapiaRESUMO
PURPOSE: PET quantification based on standardized uptake values (SUV) is hampered by several factors, in particular by variability in PET acquisition settings and data analysis methods. Quantitative PET/CT studies acquired during a multicentre trial require harmonization of imaging procedures to maximize study power. The aims of this study were to determine which phantoms are most suitable for detecting differences in image quality and quantification, and which methods for defining volumes of interest (VOI) are least sensitive to these differences. METHODS: The most common accreditation phantoms used in oncology FDG PET/CT trials were scanned on the same scanner. These phantoms were those used by the Society of Nuclear Medicine Clinical Trials Network (SNM-CTN), the European Association of Nuclear Medicine/National Electrical Manufacturers Association (EANM/NEMA) and the American College of Radiology (ACR). In addition, tumour SUVs were derived from ten oncology whole-body examinations performed on the same PET/CT system. Both phantom and clinical data were reconstructed using different numbers of iterations, subsets and time-of-flight kernel widths. Subsequently, different VOI methods (VOI(A50%), VOI(max), VOI(3Dpeak), VOI(2Dpeak)) were applied to assess the impact of changes in image reconstruction settings on SUV and recovery coefficients (RC). RESULTS: All phantoms demonstrated sensitivity for detecting changes in SUV and RC measures in response to changes in image reconstruction settings and VOI analysis methods. The SNM-CTN and EANM/NEMA phantoms showed almost equal sensitivity in detecting RC differences with changes in image characteristics. Phantom and clinical data demonstrated that the VOI analysis methods VOI(A50%) and VOI(max) gave SUV and RC values with large variability in relation to image characteristics, whereas VOI(3Dpeak) and VOI(2Dpeak) were less sensitive to these differences. CONCLUSION: All three phantoms may be used to harmonize parameters for data acquisition, processing and analysis. However, the SNM-CTN and EANM/NEMA phantoms are the most sensitive to parameter changes and are suitable for harmonizing SUV quantification based on 3D VOIs, such as VOI(A50%) and VOI(3Dpeak), and VOImax. Variability in SUV quantification after harmonization could be further minimized using VOI(3Dpeak) analysis, which was least sensitive to residual variability in image quality and quantification.
Assuntos
Estudos Multicêntricos como Assunto , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/instrumentação , Neoplasias Colorretais/diagnóstico por imagem , Interpretação Estatística de Dados , Neoplasias Esofágicas/diagnóstico por imagem , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Imagem Multimodal/métodos , Compostos Radiofarmacêuticos , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X/métodosRESUMO
PURPOSE: To support acquisition of accurate, reproducible and high-quality preclinical imaging data, various standardisation resources have been developed over the years. However, it is unclear the impact of those efforts in current preclinical imaging practices. To better understand the status quo in the field of preclinical imaging standardisation, the STANDARD group of the European Society of Molecular Imaging (ESMI) put together a community survey and a forum for discussion at the European Molecular Imaging Meeting (EMIM) 2022. This paper reports on the results from the STANDARD survey and the forum discussions that took place at EMIM2022. PROCEDURES: The survey was delivered to the community by the ESMI office and was promoted through the Society channels, email lists and webpages. The survey contained seven sections organised as generic questions and imaging modality-specific questions. The generic questions focused on issues regarding data acquisition, data processing, data storage, publishing and community awareness of international guidelines for animal research. Specific questions on practices in optical imaging, PET, CT, SPECT, MRI and ultrasound were further included. RESULTS: Data from the STANDARD survey showed that 47% of survey participants do not have or do not know if they have QC/QA guidelines at their institutes. Additionally, a large variability exists in the ways data are acquired, processed and reported regarding general aspects as well as modality-specific aspects. Moreover, there is limited awareness of the existence of international guidelines on preclinical (imaging) research practices. CONCLUSIONS: Standardisation of preclinical imaging techniques remains a challenge and hinders the transformative potential of preclinical imaging to augment biomedical research pipelines by serving as an easy vehicle for translation of research findings to the clinic. Data collected in this project show that there is a need to promote and disseminate already available tools to standardise preclinical imaging practices.
Assuntos
Pesquisa Biomédica , Animais , Inquéritos e Questionários , Padrões de Referência , Imageamento por Ressonância Magnética , UltrassonografiaRESUMO
Current diagnostic criteria for myelofibrosis are largely based on bone marrow (BM) biopsy results. However, these have several limitations, including sampling errors. Explorative studies have indicated that imaging might form an alternative for the evaluation of disease activity, but the heterogeneity in BM abnormalities complicates the choice for the optimal technique. In our prospective diagnostic pilot study, we aimed to visualize all BM abnormalities in myelofibrosis before and during ruxolitinib treatment using both PET/CT and MRI. A random sample of patients was scheduled for examinations at baseline and after 6 and 18 months of treatment, including clinical and laboratory examinations, BM biopsies, MRI (T1-weighted, Dixon, dynamic contrast-enhanced (DCE)) and PET/CT ([15O]water, [18F]NaF)). At baseline, all patients showed low BM fat content (indicated by T1-weighted MRI and Dixon), increased BM blood flow (as measured by [15O]water PET/CT), and increased osteoblastic activity (reflected by increased skeletal [18F]NaF uptake). One patient died after the baseline evaluation. In the others, BM fat content increased to various degrees during treatment. Normalization of BM blood flow (as reflected by [15O]water PET/CT and DCE-MRI) occurred in one patient, who also showed the fastest clinical response. Vertebral [18F]NaF uptake remained stable in all patients. In evaluable cases, histopathological parameters were not accurately reflected by imaging results. A case of sampling error was suspected. We conclude that imaging results can provide information on functional processes and disease distribution throughout the BM. Differences in early treatment responses were especially reflected by T1-weighted MRI. Limitations in the gold standard hampered the evaluation of diagnostic accuracy.
Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Mielofibrose Primária , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Medula Óssea/diagnóstico por imagem , Medula Óssea/patologia , Projetos Piloto , Mielofibrose Primária/diagnóstico por imagem , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/patologia , Estudos Prospectivos , Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética/métodosRESUMO
INTRODUCTION: 89Zr-immuno-PET (positron emission tomography with zirconium-89-labeled monoclonal antibodies ([89Zr]Zr-mAbs)) can be used to study the biodistribution of mAbs targeting the immune system. The measured uptake consists of target-specific and non-specific components, and it can be influenced by plasma availability of the tracer. To find evidence for target-specific uptake, i.e., target engagement, we studied five immune-checkpoint-targeting [89Zr]Zr-mAbs to (1) compare the uptake with previously reported baseline values for non-specific organ uptake (ns-baseline) and (2) look for saturation effects of increasing mass doses. METHOD: 89Zr-immuno-PET data from five [89Zr]Zr-mAbs, i.e., nivolumab and pembrolizumab (anti-PD-1), durvalumab (anti-PD-L1), BI 754,111 (anti-LAG-3), and ipilimumab (anti-CTLA-4), were analysed. For each mAb, 2-3 different mass doses were evaluated. PET scans and blood samples from at least two time points 24 h post injection were available. In 35 patients, brain, kidneys, liver, spleen, lungs, and bone marrow were delineated. Patlak analysis was used to account for differences in plasma activity concentration and to quantify irreversible uptake (Ki). To identify target engagement, Ki values were compared to ns-baseline Ki values previously reported, and the effect of increasing mass doses on Ki was investigated. RESULTS: All mAbs, except ipilimumab, showed Ki values in spleen above the ns-baseline for the lowest administered mass dose, in addition to decreasing Ki values with higher mass doses, both indicative of target engagement. For bone marrow, no ns-baseline was established previously, but a similar pattern was observed. For kidneys, most mAbs showed Ki values within the ns-baseline for both low and high mass doses. However, with high mass doses, some saturation effects were seen, suggestive of a lower ns-baseline value. Ki values were near zero in brain tissue for all mass doses of all mAbs. CONCLUSION: Using Patlak analysis and the established ns-baseline values, evidence for target engagement in (lymphoid) organs for several immune checkpoint inhibitors could be demonstrated. A decrease in the Ki values with increasing mass doses supports the applicability of Patlak analysis for the assessment of target engagement for PET ligands with irreversible uptake behavior.
RESUMO
PURPOSE: Zirconium-89-immuno-positron emission tomography (89Zr-immuno-PET) has enabled visualization of zirconium-89 labelled monoclonal antibody (89Zr-mAb) uptake in organs and tumors in vivo. Patlak linearization of 89Zr-immuno-PET quantification data allows for separation of reversible and irreversible uptake, by combining multiple blood samples and PET images at different days. As one can obtain only a limited number of blood samples and scans per patient, choosing the optimal time points is important. Tissue activity concentration curves were simulated to evaluate the effect of imaging time points on Patlak results, considering different time points, input functions, noise levels and levels of reversible and irreversible uptake. METHODS: Based on 89Zr-mAb input functions and reference values for reversible (VT) and irreversible (Ki) uptake from literature, multiple tissue activity curves were simulated. Three different 89Zr-mAb input functions, five time points between 24 and 192 h p.i., noise levels of 5, 10 and 15%, and three reference Ki and VT values were considered. Simulated Ki and VT were calculated (Patlak linearization) for a thousand repetitions. Accuracy and precision of Patlak linearization were evaluated by comparing simulated Ki and VT with reference values. RESULTS: Simulations showed that Ki is always underestimated. Inclusion of time point 24 h p.i. reduced bias and variability in VT, and slightly reduced bias and variability in Ki, as compared to combinations of three later time points. After inclusion of 24 h p.i., minimal differences were found in bias and variability between different combinations of later imaging time points, despite different input functions, noise levels and reference values. CONCLUSION: Inclusion of a blood sample and PET scan at 24 h p.i. improves accuracy and precision of Patlak results for 89Zr-immuno-PET; the exact timing of the two later time points is not critical.
RESUMO
Several FDA/EMA-approved nanomedicines have demonstrated improved pharmacokinetics and toxicity profiles compared to their conventional chemotherapeutic counterparts. The next step to increase therapeutic efficacy depends on tumor accumulation, which can be highly heterogeneous. A clinical tool for patient stratification is urgently awaited. Therefore, a docetaxel-entrapping polymeric nanoparticle (89 Zr-CPC634) is radiolabeled, and positron emission tomography/computed tomography (PET/CT) imaging is performed in seven patients with solid tumors with two different doses of CPC634: an on-treatment (containing 60 mg m-2 docetaxel) and a diagnostic (1-2 mg docetaxel) dose (NCT03712423). Pharmacokinetic half-life for 89 Zr-CPC634 is mean 97.0 ± 14.4 h on-treatment, and 62.4 ± 12.9 h for the diagnostic dose (p = 0.003). At these doses accumulation is observed in 46% and 41% of tumor lesions with a median accumulation in positive lesions 96 h post-injection of 4.94 and 4.45%IA kg-1 (p = 0.91), respectively. In conclusion, PET/CT imaging with a diagnostic dose of 89 Zr-CPC634 accurately reflects on-treatment tumor accumulation and thus opens the possibility for patient stratification in cancer nanomedicine with polymeric nanoparticles.
Assuntos
Nanopartículas , Neoplasias , Docetaxel/uso terapêutico , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polímeros/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , ZircônioRESUMO
The tumor programmed death ligand 1 (PD-L1) proportion score is the current method for selecting non-small cell lung cancer (NSCLC) patients for single-agent treatment with pembrolizumab, a programmed cell death 1 (PD-1) monoclonal antibody. However, not all patients respond to therapy. Better understanding of in vivo drug behavior may help in the selection of patients who will benefit the most. Methods: NSCLC patients eligible for pembrolizumab monotherapy as first- or later-line therapy were enrolled. Patients received 2 injections of 89Zr-pembrolizumab, 1 without a preceding dose of pembrolizumab and 1 with a preceding dose of 200 mg of pembrolizumab, directly before tracer injection. Up to 4 PET/CT scans were obtained after tracer injection. After imaging acquisition, patients were treated with 200 mg of pembrolizumab every 3 wk. Tumor uptake and tracer biodistribution were visually assessed and quantified as the SUV. Tumor tracer uptake was correlated with PD-1 and PD-L1 expression and response to pembrolizumab treatment. Results: Twelve NSCLC patients were included. One patient experienced grade 3 myalgia after tracer injection. 89Zr-pembrolizumab was observed in the blood pool, liver, and spleen. Tracer uptake was visualized in 47.2% of 72 tumor lesions measuring ΒΧΡ20 mm in the long-axis diameter, and substantial uptake heterogeneity was observed within and between patients. Uptake was higher in patients with a response to pembrolizumab treatment (n = 3) than in patients without a response (n = 9), although this finding was not statistically significant (median SUVpeak, 11.4 vs. 5.7; P = 0.066). No significant correlations were found with PD-L1 or PD-1 immunohistochemistry. Conclusion:89Zr-pembrolizumab injection was safe, with only 1 grade 3 adverse event-possibly immune-related-in 12 patients. 89Zr-pembrolizumab tumor uptake was higher in patients with a response to pembrolizumab treatment but did not correlate with PD-L1 or PD-1 immunohistochemistry.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Anticorpos Monoclonais Humanizados , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptor de Morte Celular Programada 1 , Distribuição TecidualRESUMO
Better biomarkers are needed to predict treatment outcome in non-small cell lung cancer (NSCLC) patients treated with anti-programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) checkpoint inhibitors. PD-L1 immunohistochemistry has limited predictive value, possibly because of tumor heterogeneity of PD-L1 expression. Noninvasive PD-L1 imaging using 89Zr-durvalumab might better reflect tumor PD-L1 expression. Methods: NSCLC patients eligible for second-line immunotherapy were enrolled. Patients received 2 injections of 89Zr-durvalumab: one without a preceding dose of unlabeled durvalumab (tracer dose only) and one with a preceding dose of 750 mg of durvalumab, directly before tracer injection. Up to 4 PET/CT scans were obtained after tracer injection. After imaging acquisition, patients were treated with 750 mg of durvalumab every 2 wk. Tracer biodistribution and tumor uptake were visually assessed and quantified as SUV, and both imaging acquisitions were compared. Tumor tracer uptake was correlated with PD-L1 expression and clinical outcome, defined as response to durvalumab treatment. Results: Thirteen patients were included, and 10 completed all scheduled PET scans. No tracer-related adverse events were observed, and all patients started durvalumab treatment. Biodistribution analysis showed 89Zr-durvalumab accumulation in the blood pool, liver, and spleen. Serial imaging showed that image acquisition 120 h after injection delivered the best tumor-to-blood pool ratio. Most tumor lesions were visualized with the tracer dose only versus the coinjection imaging acquisition (25% vs. 13.5% of all lesions). Uptake heterogeneity was observed within (SUVpeak range, 0.2-15.1) and between patients. Tumor uptake was higher in patients with treatment response or stable disease than in patients with disease progression according to RECIST 1.1. However, this difference was not statistically significant (median SUVpeak, 4.9 vs. 2.4; P = 0.06). SUVpeak correlated better with the combined tumor and immune cell PD-L1 score than with PD-L1 expression on tumor cells, although neither was statistically significant (P = 0.06 and P = 0.93, respectively). Conclusion:89Zr-durvalumab was safe, without any tracer-related adverse events, and more tumor lesions were visualized using the tracer dose-only imaging acquisition. 89Zr-durvalumab tumor uptake was higher in patients with a response to durvalumab treatment but did not correlate with tumor PD-L1 immunohistochemistry.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Anticorpos Monoclonais , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Distribuição TecidualRESUMO
Acquisition time and injected activity of 18F-fluorodeoxyglucose (18F-FDG) PET should ideally be reduced. However, this decreases the signal-to-noise ratio (SNR), which impairs the diagnostic value of these PET scans. In addition, 89Zr-antibody PET is known to have a low SNR. To improve the diagnostic value of these scans, a Convolutional Neural Network (CNN) denoising method is proposed. The aim of this study was therefore to develop CNNs to increase SNR for low-count 18F-FDG and 89Zr-antibody PET. Super-low-count, low-count and full-count 18F-FDG PET scans from 60 primary lung cancer patients and full-count 89Zr-rituximab PET scans from five patients with non-Hodgkin lymphoma were acquired. CNNs were built to capture the features and to denoise the PET scans. Additionally, Gaussian smoothing (GS) and Bilateral filtering (BF) were evaluated. The performance of the denoising approaches was assessed based on the tumour recovery coefficient (TRC), coefficient of variance (COV; level of noise), and a qualitative assessment by two nuclear medicine physicians. The CNNs had a higher TRC and comparable or lower COV to GS and BF and was also the preferred method of the two observers for both 18F-FDG and 89Zr-rituximab PET. The CNNs improved the SNR of low-count 18F-FDG and 89Zr-rituximab PET, with almost similar or better clinical performance than the full-count PET, respectively. Additionally, the CNNs showed better performance than GS and BF.