Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 173(1): 74-89.e20, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29570999

RESUMO

A decline in capillary density and blood flow with age is a major cause of mortality and morbidity. Understanding why this occurs is key to future gains in human health. NAD precursors reverse aspects of aging, in part, by activating sirtuin deacylases (SIRT1-SIRT7) that mediate the benefits of exercise and dietary restriction (DR). We show that SIRT1 in endothelial cells is a key mediator of pro-angiogenic signals secreted from myocytes. Treatment of mice with the NAD+ booster nicotinamide mononucleotide (NMN) improves blood flow and increases endurance in elderly mice by promoting SIRT1-dependent increases in capillary density, an effect augmented by exercise or increasing the levels of hydrogen sulfide (H2S), a DR mimetic and regulator of endothelial NAD+ levels. These findings have implications for improving blood flow to organs and tissues, increasing human performance, and reestablishing a virtuous cycle of mobility in the elderly.


Assuntos
Envelhecimento , Sulfeto de Hidrogênio/metabolismo , NAD/metabolismo , Animais , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Camundongos , Camundongos Knockout , Microvasos/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Neovascularização Fisiológica , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Condicionamento Físico Animal , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Birth Defects Res B Dev Reprod Toxicol ; 104(5): 196-203, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26401846

RESUMO

BACKGROUND: There are a wide range of drugs including antidepressants, anticonvulsants and antipsychotics that cause embryonic bradycardia in vitro but it is unknown if they have a similar effect in vivo. One way to verify whether these in vitro findings are replicated in vivo is by the use of ultrasound examination of dosed pregnant rats. We tested this by examining the effect of dofetilide on embryonic heart rate (HR) in vivo using ultrasound. METHODS: Rats were dosed with dofetilide (4 or 2.5 mg/kg) on GD11 or (5 or 2.5 mg/kg) on GD13 and embryonic HR assessed by ultrasound, 2 and 24 hr later. Fetuses were examined for malformations on GD20. RESULTS: HR of control rat embryos showed a wide range at each gestational day. Dosing with dofetilide on GD11 caused severe bradycardia (∼ 60% reduction) 2 hours after dosing with recovery after 24 h of >60% of LD but death and slow HR among the HD embryos. At term, 32% of the LD surviving fetuses had hypoplastic upper lip while >90% of HD embryos had died. On GD13, embryonic HR was reduced in a dose-dependent manner with >85% of LD and HD recovered by 24 hr. At term, all LD fetuses were normal while 29% of HD fetuses had limb defects. CONCLUSIONS: Ultrasound is a useful technique to investigate the effect of maternally administered drugs on the embryonic HR in the rat. The results may provide more information about the safety of these drugs in pregnancy leading to better risk assessment for the human.


Assuntos
Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/fisiologia , Frequência Cardíaca Fetal/efeitos dos fármacos , Fenetilaminas/toxicidade , Sulfonamidas/toxicidade , Ultrassonografia Pré-Natal/métodos , Animais , Idade Gestacional , Ratos , Coloração e Rotulagem
4.
Acta Biomater ; 156: 75-87, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36055612

RESUMO

Osteochondral tissue has a complex hierarchical structure spanning subchondral bone to articular cartilage. Biomaterials approaches to mimic and repair these interfaces have had limited success, largely due to challenges in fabricating composite hard-soft interfaces with living cells. Biofabrication approaches have emerged as attractive methods to form osteochondral analogues through additive assembly of hard and soft components. We have developed a unique printing platform that is able to integrate soft and hard materials concurrently through freeform printing of mineralized constructs within tunable microgel suspensions containing living cells. A library of microgels based on gelatin were prepared, where the stiffness of the microgels and a liquid "filler" phase can be tuned for bioprinting while simultaneously directing differentiation. Tuning microgel stiffness and filler content differentially directs chondrogenesis and osteogenesis within the same construct, demonstrating how this technique can be used to fabricate osteochondral interfaces in a single step. Printing of a rapidly setting calcium phosphate cement, so called "bone-ink" within a cell laden suspension bath further guides differentiation, where the cells adjacent to the nucleated hydroxyapatite phase undergo osteogenesis with cells in the surrounding medium undergoing chondrogenesis. In this way, bone analogues with hierarchical structure can be formed within cell-laden gradient soft matrices to yield multiphasic osteochondral constructs. This technique provides a versatile one-pot biofabrication approach without harsh post-processing which will aid efforts in bone disease modelling and tissue engineering. STATEMENT OF SIGNIFICANCE: This paper demonstrates the first example of a biofabrication approach to rapidly form osteochondral constructs in a single step under physiological conditions. Key to this advance is a tunable suspension of extracellular matrix microgels that are packed together with stem cells, providing a unique and modular scaffolding for guiding the simultaneous formation of bone and cartilage tissue. The physical properties of the suspension allow direct writing of a ceramic "bone-ink", resulting in an ordered structure of microscale hydrogels, living cells, and bone mimics in a single step. This platform reveals a simple approach to making complex skeletal tissue for disease modelling, with the possibility of repairing and replacing bone-cartilage interfaces in the clinic using a patient's own cells.


Assuntos
Bioimpressão , Cartilagem Articular , Células-Tronco Mesenquimais , Microgéis , Humanos , Tinta , Engenharia Tecidual/métodos , Hidrogéis/química , Impressão Tridimensional , Alicerces Teciduais/química , Condrogênese , Bioimpressão/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-37643902

RESUMO

The extracellular matrix in tissue consists of complex heterogeneous soft materials with hierarchical structure and dynamic mechanical properties dictating cell and tissue level function. In many natural matrices, there are nanofibrous structures that serve to guide cell activity and dictate the form and function of tissue. Synthetic hydrogels with integrated nanofibers can mimic the structural properties of native tissue; however, model systems with dynamic mechanical properties remain elusive. Here we demonstrate modular nanofibrous hydrogels that can be reversibly stiffened in response to applied magnetic fields. Iron oxide nanoparticles were incorporated into gelatin nanofibers through electrospinning, followed by chemical stabilization and fragmentation. These magnetoactive nanofibers can be mixed with virtually any hydrogel material and reversibly stiffen the matrix at a low fiber content (≤3%). In contrast to previous work, where a large quantity of magnetic material disallowed cell encapsulation, the low nanofiber content allows matrix stiffening with cells in 3D. Using adipose derived stem cells, we show how nanofibrous matrices are beneficial for both osteogenesis and adipogenesis, where stiffening the hydrogel with applied magnetic fields enhances osteogenesis while discouraging adipogenesis. Skeletal myoblast progenitors were used as a model of tissue morphogenesis with matrix stiffening augmenting myogenesis and multinucleated myotube formation. The ability to reversibly stiffen fibrous hydrogels through magnetic stimulation provides a useful tool for studying nanotopography and dynamic mechanics in cell culture, with a scope for stimuli responsive materials for tissue engineering.

6.
Adv Healthc Mater ; 11(24): e2201122, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35866537

RESUMO

During tissue development, stem and progenitor cells form functional tissue with high cellular diversity and intricate micro- and macro-architecture. Current approaches have attempted to replicate this process with materials cues or through spontaneous cell self-organization. However, cell-directed and materials-directed organization are required simultaneously to achieve biomimetic structure and function. Here, it is shown how integrating live adipose derived stem cells with gradient microgel suspensions steers divergent differentiation outcomes. Microgel matrices composed of small particles are found to promote adipogenic differentiation, while larger particles fostered increased cell spreading and osteogenic differentiation. Tuning the matrix formulation demonstrates that early cell adhesion and spreading dictate differentiation outcome. Combining small and large microgels into gradients spatially directs proliferation and differentiation over time. After 21 days of culture, osteogenic conditions foster significant mineralization within the individual microgels, thereby providing cell-directed changes in composition and mechanics within the gradient porous scaffold. Freeform printing of high-density cell suspensions is performed across these gradients to demonstrate the potential for hierarchical tissue biofabrication. Interstitial porosity influences cell expansion from the print and microgel size guides spatial differentiation, thereby providing scope to fabricate tissue gradients at multiple scales through integrated and printed cell populations.


Assuntos
Microgéis , Engenharia Tecidual , Osteogênese , Diferenciação Celular , Células-Tronco , Alicerces Teciduais/química
7.
Biomater Sci ; 9(12): 4496-4509, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34008601

RESUMO

The tissue microenvironment contains a complex assortment of multiple cell types, matrices, and vessel structures, which is difficult to reconstruct in vitro. Here, we demonstrate model tumor microenvironments formed through direct writing of vasculature channels and tumor cell aggregates, within a cell-laden microgel matrix. Photocrosslinkable microgels provide control over local and global mechanics, while enabling the integration of virtually any cell type. Direct writing of a Pluronic sacrificial ink into a stromal cell-microgel suspension is used to form vessel structures for endothelialization, followed by printing of melanoma aggregates. Tumor cells migrate into the prototype vessels as a function of spatial location, thereby providing a measure of invasive potential. The integration of perfusable channels with multiple spatially defined cell types provides new avenues for modelling development and disease, with scope for both fundamental research and drug development efforts.


Assuntos
Microgéis , Hidrogéis , Impressão Tridimensional , Microambiente Tumoral
8.
RSC Med Chem ; 12(7): 1207-1221, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34355185

RESUMO

Radiopharmaceuticals that target the translocator protein 18 kDa (TSPO) have been investigated with positron emission tomography (PET) to study neuroinflammation, neurodegeneration and cancer. We have developed the novel, achiral, 2-phenylimidazo[1,2-a]pyridine, PBR316 that targets the translocator protein 18 kDa (TSPO) that addresses some of the limitations inherent in current TSPO ligands; namely specificity in binding, blood brain barrier permeability, metabolism and insensitivity to TSPO binding in subjects as a result of rs6971 polymorphism. PBR316 has high nanomolar affinity (4.7-6.0 nM) for the TSPO, >5000 nM for the central benzodiazepine receptor (CBR) and low sensitivity to rs6971 polymorphism with a low affinity binders (LABs) to high affinity binders (HABs) ratio of 1.5. [18F]PBR316 was prepared in 20 ± 5% radiochemical yield, >99% radiochemical purity and a molar activity of 160-400 GBq µmol-1. Biodistribution in rats showed high uptake of [18F]PBR316 in organs known to express TSPO such as heart (3.9%) and adrenal glands (7.5% ID per g) at 1 h. [18F]PBR316 entered the brain and accumulated in TSPO-expressing regions with an olfactory bulb to brain ratio of 3 at 15 min and 7 at 4 h. Radioactivity was blocked by PK11195 and Ro 5-4864 but not Flumazenil. Metabolite analysis showed that radioactivity in adrenal glands and the brain was predominantly due to the intact radiotracer. PET-CT studies in mouse-bearing prostate tumour xenografts indicated biodistribution similar to rats with radioactivity in the tumour increasing with time. [18F]PBR316 shows in vitro binding that is insensitive to human polymorphism and has specific and selective in vivo binding to the TSPO. [18F]PBR316 is suitable for further biological and clinical studies.

9.
Redox Biol ; 38: 101790, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33202300

RESUMO

Superoxide dismutase (SOD) is known to be protective against oxidative stress-mediated skin dysfunction. Here we explore the potential therapeutic activities of RM191A, a novel SOD mimetic, on skin. RM191A is a water-soluble dimeric copper (Cu2+-Cu3+)-centred polyglycine coordination complex. It displays 10-fold higher superoxide quenching activity compared to SOD as well as significant antioxidant, anti-inflammatory and immunomodulatory activities through beneficial modulation of several significant inflammatory cytokines in vitro and in vivo. We tested the therapeutic potential of RM191A in a topical gel using a human skin explant model and observed that it significantly inhibits UV-induced DNA damage in the epidermis and dermis, including cyclobutane pyrimidine dimers (CPD), 8-oxo-guanine (8-oxoG) and 8-nitroguanine (8NGO). RM191A topical gel is found to be non-toxic, non-teratogenic and readily distributed in the body of mice. Moreover, it significantly accelerates excisional wound healing, reduces 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation and attenuates age-associated oxidative stress in skin, demonstrating both skin regenerative and geroprotective properties of RM191A.


Assuntos
Neoplasias Cutâneas , Pele , Animais , Epiderme , Camundongos , Superóxido Dismutase , Acetato de Tetradecanoilforbol
10.
Sci Adv ; 7(3)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523875

RESUMO

Terminally differentiated murine osteocytes and adipocytes can be reprogrammed using platelet-derived growth factor-AB and 5-azacytidine into multipotent stem cells with stromal cell characteristics. We have now optimized culture conditions to reprogram human adipocytes into induced multipotent stem (iMS) cells and characterized their molecular and functional properties. Although the basal transcriptomes of adipocyte-derived iMS cells and adipose tissue-derived mesenchymal stem cells were similar, there were changes in histone modifications and CpG methylation at cis-regulatory regions consistent with an epigenetic landscape that was primed for tissue development and differentiation. In a non-specific tissue injury xenograft model, iMS cells contributed directly to muscle, bone, cartilage, and blood vessels, with no evidence of teratogenic potential. In a cardiotoxin muscle injury model, iMS cells contributed specifically to satellite cells and myofibers without ectopic tissue formation. Together, human adipocyte-derived iMS cells regenerate tissues in a context-dependent manner without ectopic or neoplastic growth.


Assuntos
Azacitidina , Fator de Crescimento Derivado de Plaquetas , Adipócitos , Tecido Adiposo , Animais , Azacitidina/farmacologia , Diferenciação Celular , Células Cultivadas , Humanos , Camundongos , Células-Tronco Multipotentes , Músculos
11.
Adv Biosyst ; 4(5): e2000056, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32402124

RESUMO

During cancer progression, a growing tumor encounters variation in the surrounding microenvironment leading to a diverse landscape at the tumor-matrix interface. Topological cues at the interface are believed to influence invasive characteristics; however, most laboratory models involve tumor spheroids that develop a uniform geometry within a homogenous hydrogel. In this communication, a method for templating hydrogels in well-defined 3D architectures is reported. Using melanoma as a model cancer, fabrication of geometrically structured model tumors in a myriad of shapes and sizes is demonstrated. These microtumors can be encapsulated in virtually any polymeric matrix, with demonstrations using poly(ethylene glycol) and gelatin-based hydrogels. Light sheet imaging reveals uniform viability throughout with regions of high curvature at the periphery influencing cellular heterogeneity. These hydrogel encapsulated microtumors can be harvested and implanted in animal models, providing a unique xenograft system where relationships between geometry, progression, and invasion may be systematically studied.


Assuntos
Matriz Extracelular/química , Hidrogéis/química , Melanoma Experimental , Impressão Tridimensional , Animais , Bovinos , Linhagem Celular Tumoral , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos
12.
ACS Appl Mater Interfaces ; 12(47): 52433-52444, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33174413

RESUMO

The CRISPR-Cas9 and related systems offer a unique genome-editing tool allowing facile and efficient introduction of heritable and locus-specific sequence modifications in the genome. Despite its molecular precision, temporal and spatial control of gene editing with the CRISPR-Cas9 system is very limited. We developed a light-sensitive liposome delivery system that offers a high degree of spatial and temporal control of gene editing with the CRISPR-Cas9 system. We demonstrated its efficient protein release by respectively assessing the targeted knockout of the eGFP gene in human HEK293/GFP cells and the TNFAIP3 gene in TNFα-induced HEK293 cells. We further validated our results at a single-cell resolution using an in vivo eGFP reporter system in zebrafish (77% knockout). These findings indicate that light-triggered liposomes may have new options for precise control of CRISPR-Cas9 release and editing.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Lipossomos/química , Animais , Embrião não Mamífero/metabolismo , Expressão Gênica/efeitos dos fármacos , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Luz , Oxigênio Singlete/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
13.
Proteomics ; 9(7): 1883-92, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19294694

RESUMO

Bladder cancer (BLCa) is a severe urological cancer of both men and women that commonly recurs and once invasive, is difficult to treat. MINA-05 (CK Life Sciences Int'l, Hong Kong) is a derivative of complex botanical extracts, shown to reduce cellular proliferation of bladder and prostate carcinomas. We tested the effects of MINA-05 against human BLCa cell sublines, B8, B8-RSP-GCK, B8-RSP-LN and C3, from a transitional cell carcinoma, grade IV, to determine the molecular targets of treatment by observing the cellular protein profile. Cells were acclimatised for 48 h then treated for 72 h with concentrations of MINA-05 reflecting 1/2 IC(50), IC(50) and 2 x IC(50) (n = 3) or with vehicle, (0.5% DMSO). Dose-dependant changes in protein abundance were detected and characterised using 2-dimensional electrophoresis and MS. We identified 10 proteins that underwent changes in abundance, pI and/or molecular mass in response to treatment. MINA-05 was shown to influence proteins across numerous functional classes including cytoskeletal proteins, energy metabolism proteins, protein degradation proteins and tumour suppressors, suggesting a global impact on these cell lines. This study implies that the ability of MINA-05 to retard cellular proliferation is attributed to its ability to alter cell cycling, metabolism, protein degradation and the cancer cell environment.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias da Bexiga Urinária/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Humanos , Proteínas de Neoplasias/metabolismo , Fosfopiruvato Hidratase/metabolismo , Schisandra , Glycine max , Yucca
14.
Cancer Lett ; 265(1): 27-38, 2008 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-18477502

RESUMO

A human bladder cancer model of nine cell sublines derived from the BL17/2 cell line was used to evaluate genes related to disease progression. Molecular profiling of sublines that were non-tumorigenic and invasive in nude mice was performed and identified 1367 differentially-expressed genes. Quantitative real-time PCR analysis of six transforming growth factor-beta (TGF-beta) pathway genes using the entire panel of nine cell lines was performed. Bone morphogenetic protein-2 expression was significantly associated with in vivo tumorigenicity of the cell lines (p=0.0228, Mann-Whitney); inhibin-betaB was related to their invasiveness (p=0.0468, Mann-Whitney). Analysis of conditioned medium showed TGF-beta1 production to be significantly associated with the phenotype of the cell line. The study shows the possible involvement of the TGF-beta pathway in bladder cancer progression.


Assuntos
Perfilação da Expressão Gênica , Fator de Crescimento Transformador beta/fisiologia , Neoplasias da Bexiga Urinária/metabolismo , Linhagem Celular Tumoral , Humanos , Transdução de Sinais , Neoplasias da Bexiga Urinária/patologia
15.
Cancer Res ; 78(12): 3122-3134, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29610116

RESUMO

Neuroblastoma is a pediatric cancer of the sympathetic nervous system where MYCN amplification is a key indicator of poor prognosis. However, mechanisms by which MYCN promotes neuroblastoma tumorigenesis are not fully understood. In this study, we analyzed global miRNA and mRNA expression profiles of tissues at different stages of tumorigenesis from TH-MYCN transgenic mice, a model of MYCN-driven neuroblastoma. On the basis of a Bayesian learning network model in which we compared pretumor ganglia from TH-MYCN+/+ mice to age-matched wild-type controls, we devised a predicted miRNA-mRNA interaction network. Among the miRNA-mRNA interactions operating during human neuroblastoma tumorigenesis, we identified miR-204 as a tumor suppressor miRNA that inhibited a subnetwork of oncogenes strongly associated with MYCN-amplified neuroblastoma and poor patient outcome. MYCN bound to the miR-204 promoter and repressed miR-204 transcription. Conversely, miR-204 directly bound MYCN mRNA and repressed MYCN expression. miR-204 overexpression significantly inhibited neuroblastoma cell proliferation in vitro and tumorigenesis in vivo Together, these findings identify novel tumorigenic miRNA gene networks and miR-204 as a tumor suppressor that regulates MYCN expression in neuroblastoma tumorigenesis.Significance: Network modeling of miRNA-mRNA regulatory interactions in a mouse model of neuroblastoma identifies miR-204 as a tumor suppressor and negative regulator of MYCN. Cancer Res; 78(12); 3122-34. ©2018 AACR.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Neoplasias do Sistema Nervoso Periférico/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Conjuntos de Dados como Assunto , Feminino , Redes Reguladoras de Genes , Genes Supressores de Tumor , Humanos , Masculino , Camundongos , Camundongos Nus , Camundongos Transgênicos , MicroRNAs/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Oncogenes/genética , Neoplasias do Sistema Nervoso Periférico/patologia , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Transl Oncol ; 9(1): 41-45, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26947880

RESUMO

Prostate cancer (CaP) is the most commonly diagnosed and the second leading cause of death from cancer in males in USA. Prostate orthotopic mouse model has been widely used to study human CaP in preclinical settings. Measurement of changes in tumor size obtained from noninvasive diagnostic images is a standard method for monitoring responses to anticancer modalities. This article reports for the first time the usage of a three-dimensional (3D) ultrasound system equipped with photoacoustic (PA) imaging in monitoring longitudinal prostate tumor growth in a PC-3 orthotopic NODSCID mouse model (n = 8). Two-dimensional and 3D modes of ultrasound show great ability in accurately depicting the size and shape of prostate tumors. PA function on two-dimensional and 3D images showed average oxygen saturation and average hemoglobin concentration of the tumor. Results showed a good fit in representative exponential tumor growth curves (n = 3; r(2) = 0.948, 0.955, and 0.953, respectively) and a good correlation of tumor volume measurements performed in vivo with autopsy (n = 8, r = 0.95, P < .001). The application of 3D ultrasound imaging proved to be a useful imaging modality in monitoring tumor growth in an orthotopic mouse model, with advantages such as high contrast, uncomplicated protocols, economical equipment, and nonharmfulness to animals. PA mode also enabled display of blood oxygenation surrounding the tumor and tumor vasculature and angiogenesis, making 3D ultrasound imaging an ideal tool for preclinical cancer research.

17.
PLoS One ; 7(8): e40716, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22870202

RESUMO

CD44 and CD147 are associated with cancer metastasis and progression. Our purpose in the study was to investigate the effects of down-regulation of CD44 or CD147 on the metastatic ability of prostate cancer (CaP) cells, their docetaxel (DTX) responsiveness and potential mechanisms involved in vitro and in vivo. CD44 and CD147 were knocked down (KD) in PC-3M-luc CaP cells using short hairpin RNA (shRNA). Expression of CD44, CD147, MRP2 (multi-drug resistance protein-2) and MCT4 (monocarboxylate tranporter-4) was evaluated using immunofluorescence and Western blotting. The DTX dose-response and proliferation was measured by MTT and colony assays, respectively. The invasive potential was assessed using a matrigel chamber assay. Signal transduction proteins in PI3K/Akt and MAPK/Erk pathways were assessed by Western blotting. An in vivo subcutaneous (s.c.) xenograft model was established to assess CaP tumorigenecity, lymph node metastases and DTX response. Our results indicated that KD of CD44 or CD147 decreased MCT4 and MRP2 expression, reduced CaP proliferation and invasive potential and enhanced DTX sensitivity; and KD of CD44 or CD147 down-regulated p-Akt and p-Erk, the main signal modulators associated with cell growth and survival. In vivo, CD44 or CD147-KD PC-3M-luc xenografts displayed suppressed tumor growth with increased DTX responsiveness compared to control xenografts. Both CD44 and CD147 enhance metastatic capacity and chemoresistance of CaP cells, potentially mediated by activation of the PI3K and MAPK pathways. Selective targeting of CD44/CD147 alone or combined with DTX may limit CaP metastasis and increase chemosensitivity, with promise for future CaP treatment.


Assuntos
Antineoplásicos/farmacologia , Basigina/biossíntese , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptores de Hialuronatos/biossíntese , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Taxoides/farmacologia , Animais , Basigina/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Docetaxel , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Receptores de Hialuronatos/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Metástase Neoplásica , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/mortalidade , Transplante Heterólogo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Mol Cell Biol ; 32(16): 3281-92, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22711990

RESUMO

The CACCC-box binding protein erythroid Krüppel-like factor (EKLF/KLF1) is a master regulator that directs the expression of many important erythroid genes. We have previously shown that EKLF drives transcription of the gene for a second KLF, basic Krüppel-like factor, or KLF3. We have now tested the in vivo role of KLF3 in erythroid cells by examining Klf3 knockout mice. KLF3-deficient adults exhibit a mild compensated anemia, including enlarged spleens, increased red pulp, and a higher percentage of erythroid progenitors, together with elevated reticulocytes and abnormal erythrocytes in the peripheral blood. Impaired erythroid maturation is also observed in the fetal liver. We have found that KLF3 levels rise as erythroid cells mature to become TER119(+). Consistent with this, microarray analysis of both TER119(-) and TER119(+) erythroid populations revealed that KLF3 is most critical at the later stages of erythroid maturation and is indeed primarily a transcriptional repressor. Notably, many of the genes repressed by KLF3 are also known to be activated by EKLF. However, the majority of these are not currently recognized as erythroid-cell-specific genes. These results reveal the molecular and physiological function of KLF3, defining it as a feedback repressor that counters the activity of EKLF at selected target genes to achieve normal erythropoiesis.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Animais , Antígenos de Grupos Sanguíneos/genética , Imunoprecipitação da Cromatina , Eritrócitos/citologia , Eritropoese , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Baço/citologia , Transcrição Gênica
19.
PLoS One ; 6(5): e19389, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21603655

RESUMO

BACKGROUND: The bisphosphonate, zoledronic acid (ZOL), can inhibit osteoclasts leading to decreased osteoclastogenesis and osteoclast activity in bone. Here, we used a mixed osteolytic/osteoblastic murine model of bone-metastatic prostate cancer, RM1(BM), to determine how inhibiting osteolysis with ZOL affects the ability of these cells to establish metastases in bone, the integrity of the tumour-bearing bones and the survival of the tumour-bearing mice. METHODS: The model involves intracardiac injection for arterial dissemination of the RM1(BM) cells in C57BL/6 mice. ZOL treatment was given via subcutaneous injections on days 0, 4, 8 and 12, at 20 and 100 µg/kg doses. Bone integrity was assessed by micro-computed tomography and histology with comparison to untreated mice. The osteoclast and osteoblast activity was determined by measuring serum tartrate-resistant acid phosphatase 5b (TRAP 5b) and osteocalcin, respectively. Mice were euthanased according to predetermined criteria and survival was assessed using Kaplan Meier plots. FINDINGS: Micro-CT and histological analysis showed that treatment of mice with ZOL from the day of intracardiac injection of RM1(BM) cells inhibited tumour-induced bone lysis, maintained bone volume and reduced the calcification of tumour-induced endochondral osteoid material. ZOL treatment also led to a decreased serum osteocalcin and TRAP 5b levels. Additionally, treated mice showed increased survival compared to vehicle treated controls. However, ZOL treatment did not inhibit the cells ability to metastasise to bone as the number of bone-metastases was similar in both treated and untreated mice. CONCLUSIONS: ZOL treatment provided significant benefits for maintaining the integrity of tumour-bearing bones and increased the survival of tumour bearing mice, though it did not prevent establishment of bone-metastases in this model. From the mechanistic view, these observations confirm that tumour-induced bone lysis is not a requirement for establishment of these bone tumours.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Osso e Ossos/efeitos dos fármacos , Difosfonatos/farmacologia , Imidazóis/farmacologia , Metástase Neoplásica/prevenção & controle , Neoplasias da Próstata/patologia , Animais , Conservadores da Densidade Óssea , Neoplasias Ósseas/etiologia , Neoplasias Ósseas/prevenção & controle , Neoplasias Ósseas/secundário , Osso e Ossos/patologia , Difosfonatos/uso terapêutico , Imidazóis/uso terapêutico , Incidência , Masculino , Camundongos , Metástase Neoplásica/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/mortalidade , Taxa de Sobrevida , Ácido Zoledrônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA