Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7967): 981-985, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225998

RESUMO

Soils store more carbon than other terrestrial ecosystems1,2. How soil organic carbon (SOC) forms and persists remains uncertain1,3, which makes it challenging to understand how it will respond to climatic change3,4. It has been suggested that soil microorganisms play an important role in SOC formation, preservation and loss5-7. Although microorganisms affect the accumulation and loss of soil organic matter through many pathways4,6,8-11, microbial carbon use efficiency (CUE) is an integrative metric that can capture the balance of these processes12,13. Although CUE has the potential to act as a predictor of variation in SOC storage, the role of CUE in SOC persistence remains unresolved7,14,15. Here we examine the relationship between CUE and the preservation of SOC, and interactions with climate, vegetation and edaphic properties, using a combination of global-scale datasets, a microbial-process explicit model, data assimilation, deep learning and meta-analysis. We find that CUE is at least four times as important as other evaluated factors, such as carbon input, decomposition or vertical transport, in determining SOC storage and its spatial variation across the globe. In addition, CUE shows a positive correlation with SOC content. Our findings point to microbial CUE as a major determinant of global SOC storage. Understanding the microbial processes underlying CUE and their environmental dependence may help the prediction of SOC feedback to a changing climate.


Assuntos
Sequestro de Carbono , Carbono , Ecossistema , Microbiologia do Solo , Solo , Carbono/análise , Carbono/metabolismo , Mudança Climática , Plantas , Solo/química , Conjuntos de Dados como Assunto , Aprendizado Profundo
3.
Appl Environ Microbiol ; 90(6): e0072424, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38771053

RESUMO

The central carbon (C) metabolic network is responsible for most of the production of energy and biosynthesis in microorganisms and is therefore key to a mechanistic understanding of microbial life in soil communities. Many upland soil communities have shown a relatively high C flux through the pentose phosphate (PP) or the Entner-Doudoroff (ED) pathway, thought to be related to oxidative damage control. We tested the hypothesis that the metabolic organization of the central C metabolic network differed between two ecosystems, an anoxic marsh soil and oxic upland soil, and would be affected by altering oxygen concentrations. We expected there to be high PP/ED pathway activity under high oxygen concentrations and in oxic soils and low PP/ED activity in reduced oxygen concentrations and in marsh soil. Although we found high PP/ED activity in the upland soil and low activity in the marsh soil, lowering the oxygen concentration for the upland soil did not reduce the relative PP/ED pathway activity as hypothesized, nor did increasing the oxygen concentration in the marsh soil increase the PP/ED pathway activity. We speculate that the high PP/ED activity in the upland soil, even when exposed to low oxygen concentrations, was related to a high demand for NADPH for biosynthesis, thus reflecting higher microbial growth rates in C-rich soils than in C-poor sediments. Further studies are needed to explain the observed metabolic diversity among soil ecosystems and determine whether it is related to microbial growth rates.IMPORTANCEWe observed that the organization of the central carbon (C) metabolic processes differed between oxic and anoxic soil. However, we also found that the pentose phosphate pathway/Entner-Doudoroff (PP/ED) pathway activity remained high after reducing the oxygen concentration for the upland soil and did not increase in response to an increase in oxygen concentration in the marsh soil. These observations contradicted the hypothesis that oxidative stress is a main driver for high PP/ED activity in soil communities. We suggest that the high PP/ED activity and NADPH production reflect higher anabolic activities and growth rates in the upland soil compared to the anaerobic marsh soil. A greater understanding of the molecular and biochemical processes in soil communities is needed to develop a mechanistic perspective on microbial activities and their relationship to soil C and nutrient cycling. Such an increased mechanistic perspective is ecologically relevant, given that the central carbon metabolic network is intimately tied to the energy metabolism of microbes, the efficiency of new microbial biomass production, and soil organic matter formation.


Assuntos
Carbono , Microbiologia do Solo , Áreas Alagadas , Carbono/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Solo/química , Traqueófitas/metabolismo , Traqueófitas/microbiologia , Traqueófitas/crescimento & desenvolvimento , Oxigênio/metabolismo , Anaerobiose , Via de Pentose Fosfato , Água Doce/microbiologia , Ecossistema
4.
Appl Environ Microbiol ; : e0080024, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920364

RESUMO

Protists are a diverse and understudied group of microbial eukaryotic organisms especially in terrestrial environments. Advances in molecular methods are increasing our understanding of the distribution and functions of these creatures; however, there is a vast array of choices researchers make including barcoding genes, primer pairs, PCR settings, and bioinformatic options that can impact the outcome of protist community surveys. Here, we tested four commonly used primer pairs targeting the V4 and V9 regions of the 18S rRNA gene using different PCR annealing temperatures and processed the sequences with different bioinformatic parameters in 10 diverse soils to evaluate how primer pair, amplification parameters, and bioinformatic choices influence the composition and richness of protist and non-protist taxa using Illumina sequencing. Our results showed that annealing temperature influenced sequencing depth and protist taxon richness for most primer pairs, and that merging forward and reverse sequencing reads for the V4 primer pairs dramatically reduced the number of sequences and taxon richness of protists. The data sets of primers that targeted the same 18S rRNA gene region (e.g., V4 or V9) had similar protist community compositions; however, data sets from primers targeting the V4 18S rRNA gene region detected a greater number of protist taxa compared to those prepared with primers targeting the V9 18S rRNA region. There was limited overlap of protist taxa between data sets targeting the two different gene regions (80/549 taxa). Together, we show that laboratory and bioinformatic choices can substantially affect the results and conclusions about protist diversity and community composition using metabarcoding.IMPORTANCEEcosystem functioning is driven by the activity and interactions of the microbial community, in both aquatic and terrestrial environments. Protists are a group of highly diverse, mostly unicellular microbes whose identity and roles in terrestrial ecosystem ecology have been largely ignored until recently. This study highlights the importance of choices researchers make, such as primer pair, on the results and conclusions about protist diversity and community composition in soils. In order to better understand the roles protist taxa play in terrestrial ecosystems, biases in methodological and analytical choices should be understood and acknowledged.

5.
Glob Chang Biol ; 30(1): e16989, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37888833

RESUMO

Anthropogenic nitrogen (N) loading alters soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) abundances, likely leading to substantial changes in soil nitrification. However, the factors and mechanisms determining the responses of soil AOA:AOB and nitrification to N loading are still unclear, making it difficult to predict future changes in soil nitrification. Herein, we synthesize 68 field studies around the world to evaluate the impacts of N loading on soil ammonia oxidizers and nitrification. Across a wide range of biotic and abiotic factors, climate is the most important driver of the responses of AOA:AOB to N loading. Climate does not directly affect the N-stimulation of nitrification, but does so via climate-related shifts in AOA:AOB. Specifically, climate modulates the responses of AOA:AOB to N loading by affecting soil pH, N-availability and moisture. AOB play a dominant role in affecting nitrification in dry climates, while the impacts from AOA can exceed AOB in humid climates. Together, these results suggest that climate-related shifts in soil ammonia-oxidizing community maintain the N-stimulation of nitrification, highlighting the importance of microbial community composition in mediating the responses of the soil N cycle to N loading.


Assuntos
Amônia , Solo , Solo/química , Nitrificação , Nitrogênio/análise , Oxirredução , Microbiologia do Solo , Archaea , Filogenia
6.
Appl Environ Microbiol ; 89(3): e0154322, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36847530

RESUMO

Increases in Arctic temperatures have thawed permafrost and accelerated tundra soil microbial activity, releasing greenhouse gases that amplify climate warming. Warming over time has also accelerated shrub encroachment in the tundra, altering plant input abundance and quality, and causing further changes to soil microbial processes. To better understand the effects of increased temperature and the accumulated effects of climate change on soil bacterial activity, we quantified the growth responses of individual bacterial taxa to short-term warming (3 months) and long-term warming (29 years) in moist acidic tussock tundra. Intact soil was assayed in the field for 30 days using 18O-labeled water, from which taxon-specific rates of 18O incorporation into DNA were estimated as a proxy for growth. Experimental treatments warmed the soil by approximately 1.5°C. Short-term warming increased average relative growth rates across the assemblage by 36%, and this increase was attributable to emergent growing taxa not detected in other treatments that doubled the diversity of growing bacteria. However, long-term warming increased average relative growth rates by 151%, and this was largely attributable to taxa that co-occurred in the ambient temperature controls. There was also coherence in relative growth rates within broad taxonomic levels with orders tending to have similar growth rates in all treatments. Growth responses tended to be neutral in short-term warming and positive in long-term warming for most taxa and phylogenetic groups co-occurring across treatments regardless of phylogeny. Taken together, growing bacteria responded distinctly to short-term and long-term warming, and taxa growing in each treatment exhibited deep phylogenetic organization. IMPORTANCE Soil carbon stocks in the tundra and underlying permafrost have become increasingly vulnerable to microbial decomposition due to climate change. The microbial responses to Arctic warming must be understood in order to predict the effects of future microbial activity on carbon balance in a warming Arctic. In response to our warming treatments, tundra soil bacteria grew faster, consistent with increased rates of decomposition and carbon flux to the atmosphere. Our findings suggest that bacterial growth rates may continue to increase in the coming decades as faster growth is driven by the accumulated effects of long-term warming. Observed phylogenetic organization of bacterial growth rates may also permit taxonomy-based predictions of bacterial responses to climate change and inclusion into ecosystem models.


Assuntos
Ecossistema , Solo , Filogenia , Tundra , Regiões Árticas , Mudança Climática , Carbono/metabolismo
7.
Glob Chang Biol ; 29(18): 5429-5444, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37317051

RESUMO

Global climate models predict that the frequency and intensity of precipitation events will increase in many regions across the world. However, the biosphere-climate feedback to elevated precipitation (eP) remains elusive. Here, we report a study on one of the longest field experiments assessing the effects of eP, alone or in combination with other climate change drivers such as elevated CO2 (eCO2 ), warming and nitrogen deposition. Soil total carbon (C) decreased after a decade of eP treatment, while plant root production decreased after 2 years. To explain this asynchrony, we found that the relative abundances of fungal genes associated with chitin and protein degradation increased and were positively correlated with bacteriophage genes, suggesting a potential viral shunt in C degradation. In addition, eP increased the relative abundances of microbial stress tolerance genes, which are essential for coping with environmental stressors. Microbial responses to eP were phylogenetically conserved. The effects of eP on soil total C, root production, and microbes were interactively affected by eCO2 . Collectively, we demonstrate that long-term eP induces soil C loss, owing to changes in microbial community composition, functional traits, root production, and soil moisture. Our study unveils an important, previously unknown biosphere-climate feedback in Mediterranean-type water-limited ecosystems, namely how eP induces soil C loss via microbe-plant-soil interplay.


Assuntos
Pradaria , Microbiota , Carbono , Mudança Climática , Nitrogênio
8.
Front Ecol Environ ; 21(9): 428-434, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38464945

RESUMO

Antibiotic resistance is one of the greatest public health challenges of our time. International efforts to curb resistance have largely focused on drug development and limiting unnecessary antibiotic use. However, in areas where water, sanitation, and hygiene infrastructure is lacking, we propose that bacterial flow between humans and animals can exacerbate the emergence and spread of resistant pathogens. Here, we describe the consequences of poor environmental controls by comparing mobile resistance elements among Escherichia coli recovered from humans and meat in Cambodia, a middle-income country with substantial human-animal connectivity and unregulated antibiotic use. We identified identical mobile resistance elements and a conserved transposon region that were widely dispersed in both humans and animals, a phenomenon rarely observed in high-income settings. Our findings indicate that plugging leaks at human-animal interfaces should be a critical part of addressing antibiotic resistance in low- and especially middle-income countries.

9.
Oecologia ; 201(3): 771-782, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36847885

RESUMO

Density dependence in an ecological community has been observed in many macro-organismal ecosystems and is hypothesized to maintain biodiversity but is poorly understood in microbial ecosystems. Here, we analyze data from an experiment using quantitative stable isotope probing (qSIP) to estimate per-capita growth and mortality rates of bacterial populations in soils from several ecosystems along an elevation gradient which were subject to nutrient addition of either carbon alone (glucose; C) or carbon with nitrogen (glucose + ammonium-sulfate; C + N). Across all ecosystems, we found that higher population densities, quantified by the abundance of genomes per gram of soil, had lower per-capita growth rates in C + N-amended soils. Similarly, bacterial mortality rates in C + N-amended soils increased at a significantly higher rate with increasing population size than mortality rates in control and C-amended soils. In contrast to the hypothesis that density dependence would promote or maintain diversity, we observed significantly lower bacterial diversity in soils with stronger negative density-dependent growth. Here, density dependence was significantly but weakly responsive to nutrients and was not associated with higher bacterial diversity.


Assuntos
Ecossistema , Solo , Microbiologia do Solo , Bactérias , Carbono
10.
Environ Microbiol ; 24(1): 357-369, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34811865

RESUMO

Soils are among the most biodiverse habitats on earth and while the species composition of microbial communities can influence decomposition rates and pathways, the functional significance of many microbial species and phylogenetic groups remains unknown. If bacteria exhibit phylogenetic organization in their function, this could enable ecologically meaningful classification of bacterial clades. Here, we show non-random phylogenetic organization in the rates of relative carbon assimilation for both rapidly mineralized substrates (amino acids and glucose) assimilated by many microbial taxa and slowly mineralized substrates (lipids and cellulose) assimilated by relatively few microbial taxa. When mapped onto bacterial phylogeny using ancestral character estimation this phylogenetic organization enabled the identification of clades involved in the decomposition of specific soil organic matter substrates. Phylogenetic organization in substrate assimilation could provide a basis for predicting the functional attributes of uncharacterized microbial taxa and understanding the significance of microbial community composition for soil organic matter decomposition.


Assuntos
Microbiota , Solo , Bactérias , Microbiota/genética , Filogenia , Solo/química , Microbiologia do Solo
11.
Glob Chang Biol ; 28(6): 2158-2168, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34923712

RESUMO

Unprecedented nitrogen (N) inputs into terrestrial ecosystems have profoundly altered soil N cycling. Ammonia oxidizers and denitrifiers are the main producers of nitrous oxide (N2 O), but it remains unclear how ammonia oxidizer and denitrifier abundances will respond to N loading and whether their responses can predict N-induced changes in soil N2 O emission. By synthesizing 101 field studies worldwide, we showed that N loading significantly increased ammonia oxidizer abundance by 107% and denitrifier abundance by 45%. The increases in both ammonia oxidizer and denitrifier abundances were primarily explained by N loading form, and more specifically, organic N loading had stronger effects on their abundances than mineral N loading. Nitrogen loading increased soil N2 O emission by 261%, whereas there was no clear relationship between changes in soil N2 O emission and shifts in ammonia oxidizer and denitrifier abundances. Our field-based results challenge the laboratory-based hypothesis that increased ammonia oxidizer and denitrifier abundances by N loading would directly cause higher soil N2 O emission. Instead, key abiotic factors (mean annual precipitation, soil pH, soil C:N ratio, and ecosystem type) explained N-induced changes in soil N2 O emission. Altogether, these findings highlight the need for considering the roles of key abiotic factors in regulating soil N transformations under N loading to better understand the microbially mediated soil N2 O emission.


Assuntos
Amônia , Solo , Desnitrificação , Ecossistema , Nitrificação , Nitrogênio/análise , Óxido Nitroso/análise , Microbiologia do Solo
12.
Glob Chang Biol ; 28(1): 128-139, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34587352

RESUMO

The carbon stored in soil exceeds that of plant biomass and atmospheric carbon and its stability can impact global climate. Growth of decomposer microorganisms mediates both the accrual and loss of soil carbon. Growth is sensitive to temperature and given the vast biological diversity of soil microorganisms, the response of decomposer growth rates to warming may be strongly idiosyncratic, varying among taxa, making ecosystem predictions difficult. Here, we show that 15 years of warming by transplanting plant-soil mesocosms down in elevation, strongly reduced the growth rates of soil microorganisms, measured in the field using undisturbed soil. The magnitude of the response to warming varied among microbial taxa. However, the direction of the response-reduced growth-was universal and warming explained twofold more variation than did the sum of taxonomic identity and its interaction with warming. For this ecosystem, most of the growth responses to warming could be explained without taxon-specific information, suggesting that in some cases microbial responses measured in aggregate may be adequate for climate modeling. Long-term experimental warming also reduced soil carbon content, likely a consequence of a warming-induced increase in decomposition, as warming-induced changes in plant productivity were negligible. The loss of soil carbon and decreased microbial biomass with warming may explain the reduced growth of the microbial community, more than the direct effects of temperature on growth. These findings show that direct and indirect effects of long-term warming can reduce growth rates of soil microbes, which may have important feedbacks to global warming.


Assuntos
Microbiota , Solo , Carbono , Mudança Climática , Ecossistema , Pradaria , Microbiologia do Solo
13.
Environ Sci Technol ; 56(8): 4871-4881, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35369697

RESUMO

Global warming is expected to affect methane (CH4) emissions from rice paddies, one of the largest human-induced sources of this potent greenhouse gas. However, the large variability in warming impacts on CH4 emissions makes it difficult to extrapolate the experimental results over large regions. Here, we show, through meta-analysis and multi-site warming experiments using the free air temperature increase facility, that warming stimulates CH4 emissions most strongly at background air temperatures during the flooded stage of ∼26 °C, with smaller responses of CH4 emissions to warming at lower and higher temperatures. This pattern can be explained by divergent warming responses of plant growth, methanogens, and methanotrophs. The effects of warming on rice biomass decreased with the background air temperature. Warming increased the abundance of methanogens more strongly at the medium air temperature site than the low and high air temperature sites. In contrast, the effects of warming on the abundance of methanotrophs were similar across the three temperature sites. We estimate that 1 °C warming will increase CH4 emissions from paddies in China by 12.6%─substantially higher than the estimates obtained from leading ecosystem models. Our findings challenge model assumptions and suggest that the estimates of future paddy CH4 emissions need to consider both plant and microbial responses to warming.


Assuntos
Euryarchaeota , Oryza , Agricultura , China , Ecossistema , Metano/análise , Óxido Nitroso/análise , Solo , Temperatura
14.
New Phytol ; 229(5): 2413-2445, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32789857

RESUMO

Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.


Assuntos
Sequestro de Carbono , Ecossistema , Atmosfera , Ciclo do Carbono , Dióxido de Carbono , Mudança Climática
15.
Glob Chang Biol ; 26(4): 1944-1952, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31909849

RESUMO

Climate warming affects soil carbon (C) dynamics, with possible serious consequences for soil C stocks and atmospheric CO2 concentrations. However, the mechanisms underlying changes in soil C storage are not well understood, hampering long-term predictions of climate C-feedbacks. The activity of the extracellular enzymes ligninase and cellulase can be used to track changes in the predominant C sources of soil microbes and can thus provide mechanistic insights into soil C loss pathways. Here we show, using meta-analysis, that reductions in soil C stocks with warming are associated with increased ratios of ligninase to cellulase activity. Furthermore, whereas long-term (≥5 years) warming reduced the soil recalcitrant C pool by 14%, short-term warming had no significant effect. Together, these results suggest that warming stimulates microbial utilization of recalcitrant C pools, possibly exacerbating long-term climate-C feedbacks.

16.
Glob Chang Biol ; 26(4): 2368-2376, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32003939

RESUMO

Elevated atmospheric CO2 (eCO2 ) generally increases carbon input in rice paddy soils and stimulates the growth of methane-producing microorganisms. Therefore, eCO2 is widely expected to increase methane (CH4 ) emissions from rice agriculture, a major source of anthropogenic CH4 . Agricultural practices strongly affect CH4 emissions from rice paddies as well, but whether these practices modulate effects of eCO2 is unclear. Here we show, by combining a series of experiments and meta-analyses, that whereas eCO2 strongly increased CH4 emissions from paddies without straw incorporation, it tended to reduce CH4 emissions from paddy soils with straw incorporation. Our experiments also identified the microbial processes underlying these results: eCO2 increased methane-consuming microorganisms more strongly in soils with straw incorporation than in soils without straw, with the opposite pattern for methane-producing microorganisms. Accounting for the interaction between CO2 and straw management, we estimate that eCO2 increases global CH4 emissions from rice paddies by 3.7%, an order of magnitude lower than previous estimates. Our results suggest that the effect of eCO2 on CH4 emissions from rice paddies is smaller than previously thought and underline the need for judicious agricultural management to curb future CH4 emissions.

17.
Glob Chang Biol ; 26(9): 5077-5086, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32529708

RESUMO

Increased human-derived nitrogen (N) deposition to terrestrial ecosystems has resulted in widespread phosphorus (P) limitation of net primary productivity. However, it remains unclear if and how N-induced P limitation varies over time. Soil extracellular phosphatases catalyze the hydrolysis of P from soil organic matter, an important adaptive mechanism for ecosystems to cope with N-induced P limitation. Here we show, using a meta-analysis of 140 studies and 668 observations worldwide, that N stimulation of soil phosphatase activity diminishes over time. Whereas short-term N loading (≤5 years) significantly increased soil phosphatase activity by 28%, long-term N loading had no significant effect. Nitrogen loading did not affect soil available P and total P content in either short- or long-term studies. Together, these results suggest that N-induced P limitation in ecosystems is alleviated in the long-term through the initial stimulation of soil phosphatase activity, thereby securing P supply to support plant growth. Our results suggest that increases in terrestrial carbon uptake due to ongoing anthropogenic N loading may be greater than previously thought.


Assuntos
Nitrogênio , Fósforo , Biomassa , Carbono , Ecossistema , Humanos , Solo
18.
Glob Chang Biol ; 26(2): 431-442, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31562826

RESUMO

Fire is a crucial event regulating the structure and functioning of many ecosystems. Yet few studies have focused on how fire affects taxonomic and functional diversities of soil microbial communities, along with changes in plant communities and soil carbon (C) and nitrogen (N) dynamics. Here, we analyze these effects in a grassland ecosystem 9 months after an experimental fire at the Jasper Ridge Global Change Experiment site in California, USA. Fire altered soil microbial communities considerably, with community assembly process analysis showing that environmental selection pressure was higher in burned sites. However, a small subset of highly connected taxa was able to withstand the disturbance. In addition, fire decreased the relative abundances of most functional genes associated with C degradation and N cycling, implicating a slowdown of microbial processes linked to soil C and N dynamics. In contrast, fire stimulated above- and belowground plant growth, likely enhancing plant-microbe competition for soil inorganic N, which was reduced by a factor of about 2. To synthesize those findings, we performed structural equation modeling, which showed that plants but not microbial communities were responsible for significantly higher soil respiration rates in burned sites. Together, our results demonstrate that fire 'reboots' the grassland ecosystem by differentially regulating plant and soil microbial communities, leading to significant changes in soil C and N dynamics.


Assuntos
Microbiota , Solo , California , Ecossistema , Pradaria , Microbiologia do Solo
19.
Glob Chang Biol ; 25(2): 686-698, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30449058

RESUMO

Rice is a staple food for nearly half of the world's population, but rice paddies constitute a major source of anthropogenic CH4 emissions. Root exudates from growing rice plants are an important substrate for methane-producing microorganisms. Therefore, breeding efforts optimizing rice plant photosynthate allocation to grains, i.e., increasing harvest index (HI), are widely expected to reduce CH4 emissions with higher yield. Here we show, by combining a series of experiments, meta-analyses and an expert survey, that the potential of CH4 mitigation from rice paddies through HI improvement is in fact small. Whereas HI improvement reduced CH4 emissions under continuously flooded (CF) irrigation, it did not affect CH4 emissions in systems with intermittent irrigation (II). We estimate that future plant breeding efforts aimed at HI improvement to the theoretical maximum value will reduce CH4 emissions in CF systems by 4.4%. However, CF systems currently make up only a small fraction of the total rice growing area (i.e., 27% of the Chinese rice paddy area). Thus, to achieve substantial CH4 mitigation from rice agriculture, alternative plant breeding strategies may be needed, along with alternative management.


Assuntos
Poluentes Atmosféricos/análise , Produção Agrícola/métodos , Recuperação e Remediação Ambiental/métodos , Gases de Efeito Estufa/análise , Metano/análise , Poluição do Ar/prevenção & controle , Oryza/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA