Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Ecol ; : e17562, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39431302

RESUMO

The composition and dynamics of the skin bacterial and fungal microbiome is thought to influence host-pathogen defence. This microbial community is shaped by host captivity, diet, and microbial interactions between bacterial and fungal components. However, there remains little understanding of how specific micronutrients influence bacterial and fungal microbiome composition and their inter-domain interactions during rewilding of captive-bred animals. This study experimentally investigated the effect of dietary beta-carotene supplementation and subsequent field release on bacterial and fungal microbiome composition and dynamics using the Southern Corroboree frog (Pseudophryne corroboree) as a model system. We found large-scale diversification of bacterial communities post-release and similar diversification of fungal communities. The rewilded fungal mycobiome was more transient and demonstrated stronger temporal and micro-spatial fluctuations than the bacterial microbiome. Accounting for temporal and spatial factors, we found strong residual associations between bacterial members, yet limited evidence for inter-domain associations, suggesting that co-occurrence patterns between bacterial and fungal communities are largely a result of shared responses to the environment rather than direct interactions. Lastly, we found supplementation of dietary beta-carotene in captivity had no impact on post-release microbiome diversity, yet was associated with approximately 15% of common bacterial and fungal genera. Our research demonstrates that environmental factors play a dominant role over dietary beta-carotene supplementation in shaping microbiome diversity post-release, and suggest inter-domain interactions may also only exert a minor influence. Further research on the function and ecology of skin bacterial and fungal microbiomes will be crucial for developing strategies to support survival of endangered amphibian species.

2.
Mol Ecol ; 27(4): 919-934, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29337419

RESUMO

Potentiating the evolution of immunity is a promising strategy for addressing biodiversity diseases. Assisted selection for infection resistance may enable the recovery and persistence of amphibians threatened by chytridiomycosis, a devastating fungal skin disease threatening hundreds of species globally. However, knowledge of the mechanisms involved in the natural evolution of immunity to chytridiomycosis is limited. Understanding the mechanisms of such resistance may help speed-assisted selection. Using a transcriptomics approach, we examined gene expression responses of endangered alpine tree frogs (Litoria verreauxii alpina) to subclinical infection, comparing two long-exposed populations with a naïve population. We performed a blinded, randomized and controlled exposure experiment, collecting skin, liver and spleen tissues at 4, 8 and 14 days postexposure from 51 wild-caught captively reared infection-naïve adult frogs for transcriptome assembly and differential gene expression analyses. We analysed our results in conjunction with infection intensity data, and the results of a large clinical survival experiment run concurrently with individuals from the same clutches. Here, we show that frogs from an evolutionarily long-exposed and phenotypically more resistant population of the highly susceptible alpine tree frog demonstrate a more robust innate and adaptive immune response at the critical early subclinical stage of infection when compared with two more susceptible populations. These results are consistent with the occurrence of evolution of resistance against chytridiomycosis, help to explain underlying resistance mechanisms, and provide genes of potential interest and sequence data for future research. We recommend further investigation of cell-mediated immunity pathways, the role of interferons and mechanisms of lymphocyte suppression.


Assuntos
Anuros/imunologia , Anuros/microbiologia , Quitridiomicetos/fisiologia , Resistência à Doença/imunologia , Imunidade , Micoses/imunologia , Micoses/microbiologia , Animais , Anuros/genética , Análise por Conglomerados , Tamanho da Ninhada , Regulação para Baixo/genética , Feminino , Ontologia Genética , Masculino , Anotação de Sequência Molecular , Família Multigênica , Análise de Sobrevida , Transcriptoma/genética , Regulação para Cima/genética
3.
Conserv Biol ; 31(3): 592-600, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27594575

RESUMO

Emerging wildlife pathogens are an increasing threat to biodiversity. One of the most serious wildlife diseases is chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd), which has been documented in over 500 amphibian species. Amphibians vary greatly in their susceptibility to Bd; some species tolerate infection, whereas others experience rapid mortality. Reservoir hosts-species that carry infection while maintaining high abundance but are rarely killed by disease-can increase extinction risk in highly susceptible, sympatric species. However, whether reservoir hosts amplify Bd in declining amphibian species has not been examined. We investigated the role of reservoir hosts in the decline of the threatened northern corroboree frog (Pseudophryne pengilleyi) in an amphibian community in southeastern Australia. In the laboratory, we characterized the response of a potential reservoir host, the (nondeclining) common eastern froglet (Crinia signifera), to Bd infection. In the field, we conducted frog abundance surveys and Bd sampling for both P. pengilleyi and C. signifera. We built multinomial logistic regression models to test whether Crinia signifera and environmental factors were associated with P. pengilleyi decline. C. signifera was a reservoir host for Bd. In the laboratory, many individuals maintained intense infections (>1000 zoospore equivalents) over 12 weeks without mortality, and 79% of individuals sampled in the wild also carried infections. The presence of C. signifera at a site was strongly associated with increased Bd prevalence in sympatric P. pengilleyi. Consistent with disease amplification by a reservoir host, P. pengilleyi declined at sites with high C. signifera abundance. Our results suggest that when reservoir hosts are present, population declines of susceptible species may continue long after the initial emergence of Bd, highlighting an urgent need to assess extinction risk in remnant populations of other declined amphibian species.


Assuntos
Anuros , Quitridiomicetos/patogenicidade , Conservação dos Recursos Naturais , Micoses/veterinária , Animais , Austrália , Espécies em Perigo de Extinção , Dinâmica Populacional
4.
Oecologia ; 184(4): 825-833, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28707112

RESUMO

Emerging pathogens can drive evolutionary shifts in host life-history traits, yet this process remains poorly documented in vertebrate hosts. Amphibian chytridiomycosis, caused by infection with the fungal pathogen Batrachochytrium dendrobatidis (Bd), is the worst recorded wildlife disease and has caused the extinction of over 100 species across multiple continents. A similar number of additional species have experienced mass declines and Bd remains a major source of mortality in many populations of declined species now persisting with the pathogen. Life-history theory predicts that increased extrinsic mortality in Bd-infected populations may alter amphibian life-history traits, but this has not been examined. Here, we investigate whether population Bd status is associated with age and size at maturity by comparing long-exposed Bd-infected populations, Bd-free populations, and museum specimens collected prior to Bd emergence for the endangered Australian frog Litoria verreauxii alpina. We show that Bd-infected populations have a higher proportion of males that mature at 1 year of age, and females that mature at 2 years of age, compared to Bd-free populations. Earlier maturation was associated with reduced size at maturity in males. Consistent with life-history theory, our findings may represent an adaptive evolutionary shift towards earlier maturation in response to high Bd-induced mortality. To our knowledge, this study provides the first evidence for a post-metamorphic Bd-associated shift in an amphibian life-history trait. Given high mortality in other Bd-challenged species, we suggest that chytridiomycosis may be a substantial new selection pressure shaping life-history traits in impacted amphibian species across multiple continents.


Assuntos
Anuros , Micoses , Animais , Anuros/microbiologia , Austrália , Quitridiomicetos , Feminino , Masculino , Micoses/microbiologia
5.
J Anim Ecol ; 85(6): 1453-1460, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27380945

RESUMO

Pathogen emergence can drive major changes in host population demography, with implications for population dynamics and sensitivity to environmental fluctuations. The amphibian disease chytridiomycosis, caused by infection with the fungal pathogen Batrachochytrium dendrobatidis (Bd), is implicated in the severe decline of over 200 amphibian species. In species that have declined but not become extinct, Bd persists and can cause substantial ongoing mortality. High rates of mortality associated with Bd may drive major changes in host demography, but this process is poorly understood. Here, we compared population age structure of Bd-infected populations, Bd-free populations and museum specimens collected prior to Bd emergence for the endangered Australian frog, Litoria verreauxii alpina (alpine tree frog). We then used population simulations to investigate how pathogen-associated demographic shifts affect the ability of populations to persist in stochastic environments. We found that Bd-infected populations have a severely truncated age structure associated with very high rates of annual adult mortality. Near-complete annual adult turnover in Bd-infected populations means that individuals breed once, compared with Bd-free populations where adults may breed across multiple years. Our simulations showed that truncated age structure erodes the capacity of populations to withstand periodic recruitment failure; a common challenge for species reproducing in uncertain environments. We document previously undescribed demographic shifts associated with a globally emerging pathogen and demonstrate how these shifts alter host ecology. Truncation of age structure associated with Bd effectively reduces host niche width and can help explain the contraction of L. v. alpina to perennial waterbodies where the risk of drought-induced recruitment failure is low. Reduced capacity to tolerate other sources of mortality may explain variation in decline severity among other chytridiomycosis-challenged species and highlights the potential to mitigate disease impacts through minimizing other sources of mortality.


Assuntos
Anuros , Quitridiomicetos/fisiologia , Secas , Micoses/veterinária , Animais , Anuros/fisiologia , Austrália/epidemiologia , Demografia , Espécies em Perigo de Extinção , Feminino , Masculino , Micoses/microbiologia , Micoses/mortalidade , Dinâmica Populacional
6.
Conserv Biol ; 28(5): 1195-205, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24975971

RESUMO

Wildlife diseases pose an increasing threat to biodiversity and are a major management challenge. A striking example of this threat is the emergence of chytridiomycosis. Despite diagnosis of chytridiomycosis as an important driver of global amphibian declines 15 years ago, researchers have yet to devise effective large-scale management responses other than biosecurity measures to mitigate disease spread and the establishment of disease-free captive assurance colonies prior to or during disease outbreaks. We examined the development of management actions that can be implemented after an epidemic in surviving populations. We developed a conceptual framework with clear interventions to guide experimental management and applied research so that further extinctions of amphibian species threatened by chytridiomycosis might be prevented. Within our framework, there are 2 management approaches: reducing Batrachochytrium dendrobatidis (the fungus that causes chytridiomycosis) in the environment or on amphibians and increasing the capacity of populations to persist despite increased mortality from disease. The latter approach emphasizes that mitigation does not necessarily need to focus on reducing disease-associated mortality. We propose promising management actions that can be implemented and tested based on current knowledge and that include habitat manipulation, antifungal treatments, animal translocation, bioaugmentation, head starting, and selection for resistance. Case studies where these strategies are being implemented will demonstrate their potential to save critically endangered species.


Assuntos
Anfíbios , Quitridiomicetos/fisiologia , Conservação dos Recursos Naturais , Surtos de Doenças/veterinária , Extinção Biológica , Micoses/veterinária , Animais , Biodiversidade , Espécies em Perigo de Extinção , Micoses/epidemiologia , Micoses/genética , Micoses/microbiologia , Medição de Risco
7.
Dis Aquat Organ ; 92(2-3): 209-16, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21268983

RESUMO

Since the early 1980s, the southern corroboree frog Pseudophryne corroboree and northern corroboree frog P. pengilleyi have been in a state of decline from their sub-alpine and high montane bog environments on the southern tablelands of New South Wales, Australia. To date, there has been no adequate explanation as to what is causing the decline of these species. We investigated the possibility that a pathogen associated with other recent frog declines in Australia, the amphibian chytrid fungus Batrachochytrium dendrobatidis, may have been implicated in the decline of the corroboree frogs. We used histology of toe material and real-time PCR of skin swabs to investigate the presence and infection rates with B. dendrobatidis in historic and extant populations of both corroboree frog species. Using histology, we did not detect any B. dendrobatidis infections in corroboree frog populations prior to their decline. However, using the same technique, high rates of infection were observed in populations of both species after the onset of substantial population declines. The real-time PCR screening of skin swabs identified high overall infection rates in extant populations of P. corroboree (between 44 and 59%), while significantly lower rates of infection were observed in low-altitude P. pengilleyi populations (14%). These results suggest that the initial and continued decline of the corroboree frogs may well be attributed to the emergence of B. dendrobatidis in populations of these species.


Assuntos
Anuros , Quitridiomicetos/isolamento & purificação , Micoses/veterinária , Altitude , Animais , Austrália/epidemiologia , Doenças Transmissíveis Emergentes/veterinária , Micoses/epidemiologia , Micoses/microbiologia , Dinâmica Populacional
8.
Sci Data ; 5: 180033, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29509187

RESUMO

The fungal skin disease chytridiomycosis has caused the devastating decline and extinction of hundreds of amphibian species globally, yet the potential for evolving resistance, and the underlying pathophysiological mechanisms remain poorly understood. We exposed 406 naïve, captive-raised alpine tree frogs (Litoria verreauxii alpina) from multiple populations (one evolutionarily naïve to chytridiomycosis) to the aetiological agent Batrachochytrium dendrobatidis in two concurrent and controlled infection experiments. We investigated (A) survival outcomes and clinical pathogen burdens between populations and clutches, and (B) individual host tissue responses to chytridiomycosis. Here we present multiple interrelated datasets associated with these exposure experiments, including animal signalment, survival and pathogen burden of 355 animals from Experiment A, and the following datasets related to 61 animals from Experiment B: animal signalment and pathogen burden; raw RNA-Seq reads from skin, liver and spleen tissues; de novo assembled transcriptomes for each tissue type; raw gene expression data; annotation data for each gene; and raw metabolite expression data from skin and liver tissues. These data provide an extensive baseline for future analyses.


Assuntos
Doenças dos Animais , Anuros , Quitridiomicetos , Micoses , Doenças dos Animais/genética , Doenças dos Animais/metabolismo , Doenças dos Animais/microbiologia , Doenças dos Animais/fisiopatologia , Animais , Micoses/genética , Micoses/metabolismo , Micoses/fisiopatologia
9.
PLoS One ; 10(12): e0143629, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26629993

RESUMO

Understanding disease dynamics during the breeding season of declining amphibian species will improve our understanding of how remnant populations persist with endemic infection, and will assist the development of management techniques to protect disease-threatened species from extinction. We monitored the endangered Litoria verreauxii alpina (alpine treefrog) during the breeding season through capture-mark-recapture (CMR) studies in which we investigated the dynamics of chytridiomycosis in relation to population size in two populations. We found that infection prevalence and intensity increased throughout the breeding season in both populations, but infection prevalence and intensity was higher (3.49 and 2.02 times higher prevalence and intensity, respectively) at the site that had a 90-fold higher population density. This suggests that Bd transmission is density-dependent. Weekly survival probability was related to disease state, with heavily infected animals having the lowest survival. There was low recovery from infection, especially when animals were heavily infected with Bd. Sympatric amphibian species are likely to be reservoir hosts for the disease and can play an important role in the disease ecology of Bd. Although we found 0% prevalence in crayfish (Cherax destructor), we found that a sympatric amphibian (Crinia signifera) maintained 100% infection prevalence at a high intensity throughout the season. Our results demonstrate the importance of including infection intensity into CMR disease analysis in order to fully understand the implications of disease on the amphibian community. We recommend a combined management approach to promote lower population densities and ensure consistent progeny survival. The most effective management strategy to safeguard the persistence of this susceptible species might be to increase habitat area while maintaining a similar sized suitable breeding zone and to increase water flow and area to reduce drought.


Assuntos
Anuros/microbiologia , Cruzamento , Quitridiomicetos/patogenicidade , Micoses/veterinária , Animais , Anuros/fisiologia , Austrália/epidemiologia , Ecossistema , Micoses/epidemiologia , Micoses/microbiologia , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA