Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Anal Chem ; 95(19): 7665-7675, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37071799

RESUMO

Extracellular vesicles (EVs) carry RNA cargo that is believed to be associated with the cell-of-origin and thus have the potential to serve as a minimally invasive liquid biopsy marker for supplying molecular information to guide treatment decisions (i.e., precision medicine). We report the affinity isolation of EV subpopulations with monoclonal antibodies attached to the surface of a microfluidic chip that is made from a plastic to allow for high-scale production. The EV microfluidic affinity purification (EV-MAP) chip was used for the isolation of EVs sourced from two-orthogonal cell types and was demonstrated for its utility in a proof-of-concept application to provide molecular subtyping information for breast cancer patients. The orthogonal selection process better recapitulated the epithelial tumor microenvironment by isolating two subpopulations of EVs: EVEpCAM (epithelial cell adhesion molecule, epithelial origin) and EVFAPα (fibroblast activation protein α, mesenchymal origin). The EV-MAP provided recovery >80% with a specificity of 99 ± 1% based on exosomal mRNA (exo-mRNA) and real time-droplet digital polymerase chain reaction results. When selected from the plasma of healthy donors and breast cancer patients, EVs did not differ in size or total RNA mass for both markers. On average, 0.5 mL of plasma from breast cancer patients yielded ∼2.25 ng of total RNA for both EVEpCAM and EVFAPα, while in the case of cancer-free individuals, it yielded 0.8 and 1.25 ng of total RNA from EVEpCAM and EVFAPα, respectively. To assess the potential of these two EV subpopulations to provide molecular information for prognostication, we performed the PAM50 test (Prosigna) on exo-mRNA harvested from each EV subpopulation. Results suggested that EVEpCAM and EVFAPα exo-mRNA profiling using subsets of the PAM50 genes and a novel algorithm (i.e., exo-PAM50) generated 100% concordance with the tumor tissue.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vesículas Extracelulares/metabolismo , Biópsia Líquida , Microambiente Tumoral
2.
Analyst ; 145(5): 1677-1686, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31867587

RESUMO

Coulter counters are used for counting particles and biological cells. Most Coulter counters are designed to analyze a sample without the ability to pre-process the sample prior to counting. For the analysis of rare cells, such as circulating tumor cells (CTCs), it is not uncommon to require enrichment before counting due to the modest throughput of µCCs and the high abundance of interfering cells, such as blood cells. We report a microfluidic-based Coulter Counter (µCC) fabricated using simple, low-cost techniques for counting rare cells that can be interfaced to sample pre- and/or post-processing units. In the current work, a microfluidic device for the affinity-based enrichment of CTCs from whole blood into a relatively small volume of ∼10 µL was interfaced to the µCC to allow for exhaustive counting of single CTCs following release of the CTCs from the enrichment chip. When integrated to the CTC affinity enrichment chip, the µCC could count the CTCs without loss and the cells could be collected for downstream molecular profiling or culturing if required. The µCC sensor counting efficiency was >93% and inter-chip variability was ∼1%.


Assuntos
Neoplasias da Mama/patologia , Separação Celular/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Mieloma Múltiplo/patologia , Células Neoplásicas Circulantes/patologia , Feminino , Humanos , Células Tumorais Cultivadas
3.
Anal Chem ; 86(8): 4058-65, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24650222

RESUMO

We report the design and performance of a polymer microfluidic device that can affinity select multiple types of biological cells simultaneously with sufficient recovery and purity to allow for the expression profiling of mRNA isolated from these cells. The microfluidic device consisted of four independent selection beds with curvilinear channels that were 25 µm wide and 80 µm deep and were modified with antibodies targeting antigens specifically expressed by two different cell types. Bifurcated and Z-configured device geometries were evaluated for cell selection. As an example of the performance of these devices, CD4+ T-cells and neutrophils were selected from whole blood as these cells are known to express genes found in stroke-related expression profiles that can be used for the diagnosis of this disease. CD4+ T-cells and neutrophils were simultaneously isolated with purities >90% using affinity-based capture in cyclic olefin copolymer (COC) devices with a processing time of ∼3 min. In addition, sufficient quantities of the cells could be recovered from a 50 µL whole blood input to allow for reverse transcription-polymerase chain reaction (RT-PCR) following cell lysis. The expression of genes from isolated T-cells and neutrophils, such as S100A9, TCRB, and FPR1, was evaluated using RT-PCR. The modification and isolation procedures demonstrated here can also be used to analyze other cell types as well where multiple subsets must be interrogated.


Assuntos
Subpopulações de Linfócitos/química , Microfluídica/métodos , Acidente Vascular Cerebral/diagnóstico , 2-Propanol/química , Alcenos/química , Antígenos CD/metabolismo , Linfócitos T CD4-Positivos/química , Moléculas de Adesão Celular/metabolismo , Separação Celular/métodos , Proteínas Ligadas por GPI/metabolismo , Humanos , Técnicas In Vitro , Indicadores e Reagentes , Neutrófilos/química , Polímeros , Polimetil Metacrilato/química , RNA Mensageiro/biossíntese , RNA Mensageiro/isolamento & purificação , Hidróxido de Sódio/química , Acidente Vascular Cerebral/patologia
4.
Analyst ; 139(6): 1355-63, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24487280

RESUMO

We present a novel microfluidic solid-phase extraction (µSPE) device for the affinity enrichment of biotinylated membrane proteins from whole cell lysates. The device offers features that address challenges currently associated with the extraction and purification of membrane proteins from whole cell lysates, including the ability to release the enriched membrane protein fraction from the extraction surface so that they are available for downstream processing. The extraction bed was fabricated in PMMA using hot embossing and was comprised of 3600 micropillars. Activation of the PMMA micropillars by UV/O3 treatment permitted generation of surface-confined carboxylic acid groups and the covalent attachment of NeutrAvidin onto the µSPE device surfaces, which was used to affinity select biotinylated MCF-7 membrane proteins directly from whole cell lysates. The inclusion of a disulfide linker within the biotin moiety permitted release of the isolated membrane proteins via DTT incubation. Very low levels (∼20 fmol) of membrane proteins could be isolated and recovered with ∼89% efficiency with a bed capacity of 1.7 pmol. Western blotting indicated no traces of cytosolic proteins in the membrane protein fraction as compared to significant contamination using a commercial detergent-based method. We highlight future avenues for enhanced extraction efficiency and increased dynamic range of the µSPE device using computational simulations of different micropillar geometries to guide future device designs.


Assuntos
Proteínas de Membrana/isolamento & purificação , Técnicas Analíticas Microfluídicas/instrumentação , Polimetil Metacrilato/química , Extração em Fase Sólida/instrumentação , Biotinilação , Linhagem Celular Tumoral , Desenho de Equipamento , Humanos , Solubilidade , Raios Ultravioleta
5.
Microsyst Technol ; 20(10-11): 1815-1825, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25349469

RESUMO

Microsystem-based technologies are providing new opportunities in the area of in vitro diagnostics due to their ability to provide process automation enabling point-of-care operation. As an example, microsystems used for the isolation and analysis of circulating tumor cells (CTCs) from complex, heterogeneous samples in an automated fashion with improved recoveries and selectivity are providing new opportunities for this important biomarker. Unfortunately, many of the existing microfluidic systems lack the throughput capabilities and/or are too expensive to manufacture to warrant their widespread use in clinical testing scenarios. Here, we describe a disposable, all-polymer, microfluidic system for the high-throughput (HT) isolation of CTCs directly from whole blood inputs. The device employs an array of high aspect ratio (HAR), parallel, sinusoidal microchannels (25 µm × 150 µm; W × D; AR = 6.0) with walls covalently decorated with anti-EpCAM antibodies to provide affinity-based isolation of CTCs. Channel width, which is similar to an average CTC diameter (12-25 µm), plays a critical role in maximizing the probability of cell/wall interactions and allows for achieving high CTC recovery. The extended channel depth allows for increased throughput at the optimized flow velocity (2 mm/s in a microchannel); maximizes cell recovery, and prevents clogging of the microfluidic channels during blood processing. Fluidic addressing of the microchannel array with a minimal device footprint is provided by large cross-sectional area feed and exit channels poised orthogonal to the network of the sinusoidal capillary channels (so-called Z-geometry). Computational modeling was used to confirm uniform addressing of the channels in the isolation bed. Devices with various numbers of parallel microchannels ranging from 50 to 320 have been successfully constructed. Cyclic olefin copolymer (COC) was chosen as the substrate material due to its superior properties during UV-activation of the HAR microchannels surfaces prior to antibody attachment. Operation of the HT-CTC device has been validated by isolation of CTCs directly from blood secured from patients with metastatic prostate cancer. High CTC sample purities (low number of contaminating white blood cells, WBCs) allowed for direct lysis and molecular profiling of isolated CTCs.

6.
Cells ; 12(18)2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37759489

RESUMO

There is a high clinical unmet need to improve outcomes for pancreatic ductal adenocarcinoma (PDAC) patients, either with the discovery of new therapies or biomarkers that can track response to treatment more efficiently than imaging. We report an innovative approach that will generate renewed interest in using circulating tumor cells (CTCs) to monitor treatment efficacy, which, in this case, used PDAC patients receiving an exploratory new therapy, poly ADP-ribose polymerase inhibitor (PARPi)-niraparib-as a case study. CTCs were enumerated from whole blood using a microfluidic approach that affinity captures epithelial and mesenchymal CTCs using anti-EpCAM and anti-FAPα monoclonal antibodies, respectively. These antibodies were poised on the surface of two separate microfluidic devices to discretely capture each subpopulation for interrogation. The isolated CTCs were enumerated using immunophenotyping to produce a numerical ratio consisting of the number of mesenchymal to epithelial CTCs (denoted "Φ"), which was used as an indicator of response to therapy, as determined using computed tomography (CT). A decreasing value of Φ during treatment was indicative of tumor response to the PARPi and was observed in 88% of the enrolled patients (n = 31). Changes in Φ during longitudinal testing were a better predictor of treatment response than the current standard CA19-9. We were able to differentiate between responders and non-responders using ΔΦ (p = 0.0093) with higher confidence than CA19-9 (p = 0.033). For CA19-9 non-producers, ΔΦ correctly predicted the outcome in 72% of the PDAC patients. Sequencing of the gDNA extracted from affinity-selected CTC subpopulations provided information that could be used for patient enrollment into the clinical trial based on their tumor mutational status in DNA repair genes.


Assuntos
Carcinoma Ductal Pancreático , Células Neoplásicas Circulantes , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Resultado do Tratamento , Neoplasias Pancreáticas
7.
Analyst ; 137(1): 87-97, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22005669

RESUMO

Single-molecule detection (SMD) has demonstrated some attractive benefits for many types of biomolecular analyses including enhanced processing speed by eliminating processing steps, elimination of ensemble averaging and single-molecule sensitivity. However, it's wide spread use has been hampered by the complex instrumentation required for its implementation when using fluorescence as the readout modality. We report herein a simple and compact fluorescence single-molecule instrument that is straightforward to operate and consisted of fiber optics directly coupled to a microfluidic device. The integrated fiber optics served as waveguides to deliver the laser excitation light to the sample and collecting the resulting emission, simplifying the optical requirements associated with traditional SMD instruments by eliminating the need for optical alignment and simplification of the optical train. Additionally, the use of a vertical cavity surface emitting laser and a single photon avalanche diode serving as the excitation source and photon transducer, respectively, as well as a field programmable gate array (FPGA) integrated into the processing electronics assisted in reducing the instrument footprint. This small footprint SMD platform was tested using fluorescent microspheres and single AlexaFluor 660 molecules to determine the optimal operating parameters and system performance. As a demonstration of the utility of this instrument for biomolecular analyses, molecular beacons (MBs) were designed to probe bacterial cells for the gene encoding Gram-positive species. The ability to monitor biomarkers using this simple and portable instrument will have a number of important applications, such as strain-specific detection of pathogenic bacteria or the molecular diagnosis of diseases requiring rapid turn-around-times directly at the point-of-use.


Assuntos
Biomarcadores/análise , Técnicas Biossensoriais/métodos , Tecnologia de Fibra Óptica/métodos , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Técnicas Biossensoriais/instrumentação , Desenho de Equipamento , Tecnologia de Fibra Óptica/instrumentação , Microesferas , Espectrometria de Fluorescência/instrumentação , Fatores de Tempo
8.
Sci Adv ; 8(39): eabn9665, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36170362

RESUMO

We report a microfluidic assay to select active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral particles (VPs), which were defined as intact particles with an accessible angiotensin-converting enzyme 2 receptor binding domain (RBD) on the spike (S) protein, from clinical samples. Affinity selection of SARS-CoV-2 particles was carried out using injection molded microfluidic chips, which allow for high-scale production to accommodate large-scale screening. The microfluidic contained a surface-bound aptamer directed against the virus's S protein RBD to affinity select SARS-CoV-2 VPs. Following selection (~94% recovery), the VPs were released from the chip's surface using a blue light light-emitting diode (89% efficiency). Selected SARS-CoV-2 VP enumeration was carried out using reverse transcription quantitative polymerase chain reaction. The VP selection assay successfully identified healthy donors (clinical specificity = 100%) and 19 of 20 patients with coronavirus disease 2019 (COVID-19) (95% sensitivity). In 15 patients with COVID-19, the presence of active SARS-CoV-2 VPs was found. The chip can be reprogrammed for any VP or exosomes by simply changing the affinity agent.

9.
Anal Chem ; 83(6): 2301-9, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21319808

RESUMO

A circulating tumor cell (CTC) selection microfluidic device was integrated to an electrokinetic enrichment device for preconcentrating CTCs directly from whole blood to allow for the detection of mutations contained within the genomic DNA of the CTCs. Molecular profiling of CTCs can provide important clinical information that cannot be garnered simply by enumerating the selected CTCs. We evaluated our approach using SW620 and HT29 cells (colorectal cancer cell lines) seeded into whole blood as a model system. Because SW620 and HT29 cells overexpress the integral membrane protein EpCAM, they could be immunospecifically selected using a microfluidic device containing anti-EpCAM antibodies immobilized to the walls of a selection bed. The microfluidic device was operated at an optimized flow rate of 2 mm s(-1), which allowed for the ability to process 1 mL of whole blood in <40 min. The selected CTCs were then enzymatically released from the antibody selection surface and hydrodynamically transported through a pair of Pt electrodes for conductivity-based enumeration. The efficiency of CTC selection was found to be 96% ± 4%. Following enumeration, the CTCs were hydrodynamically transported at a flow rate of 1 µL min(-1) to an on-chip electromanipulation unit, where they were electrophoretically withdrawn from the bulk hydrodynamic flow and directed into a receiving reservoir. Using an electric field of 100 V cm(-1), the negatively charged CTCs were enriched into an anodic receiving reservoir to a final volume of 2 µL, providing an enrichment factor of 500. The collected CTCs could then be searched for point mutations using a PCR/LDR/capillary electrophoresis assay. The DNA extracted from the CTCs was subjected to a primary polymerase chain reaction (PCR) with the amplicons used for a ligase detection reaction (LDR) to probe for KRAS oncogenic point mutations. Point mutations in codon 12 of the KRAS gene were successfully detected in the SW620 CTCs for samples containing <10 CTCs in 1 mL of whole blood. However, the HT29 cells did not contain these mutations, consistent with their known genotype.


Assuntos
Contagem de Células/instrumentação , Separação Celular/instrumentação , Eletricidade , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Condutividade Elétrica , Eletroforese Capilar , Células HT29 , Humanos , Hidrodinâmica , Ligases/metabolismo , Reação em Cadeia da Polimerase , Propriedades de Superfície
10.
Electrophoresis ; 32(22): 3221-32, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22038569

RESUMO

An integrated and modular DNA analysis system is reported that consists of two modules: (i) A continuous flow polymerase chain reaction (CFPCR) module fabricated in a high T(g) (150°C) polycarbonate substrate in which selected gene fragments were amplified using biotin and fluorescently labeled primers accomplished by continuously shuttling small packets of PCR reagents and template through isothermal zones as opposed to heating and cooling large thermal masses typically performed in batch-type thermal reactors. (ii) µCE (micro-capillary electrophoresis) module fabricated in poly(methylmethacrylate) (PMMA), which utilized a bioaffinity selection and purification bed (2.9 µL) to preconcentrate and purify the PCR products generated from the CFPCR module prior to electrophoretic sorting. Biotin-labeled CFPCR products were hydrostatically pumped through the streptavidin-modified bed, where they were extracted onto the surface of micropillars. The affinity bed was also fabricated in PMMA and was populated with an array of microposts (50 µm width; 100 µm height) yielding a total surface area of ∼117 mm(2). This solid-phase extraction (SPE) process demonstrated high selectivity for biotinylated amplicons and utilized the strong streptavidin/biotin interaction (K(d) = 10(-15) M) to generate high recoveries. The SPE selected CFPCR products were thermally denatured and single-stranded DNA released for injection into a 7-cm-long µCE channel for size-based separations and fluorescence detection. The utility of the system was demonstrated using Alu DNA typing for gender and ethnicity determinations as a model. Compared with the traditional cross-T injection procedure typically used for µCE, the affinity pre-concentration and injection procedure generated signal enhancements of 17- to 40-fold, critical for CFPCR thermal cyclers due to Taylor dispersion associated with their operation.


Assuntos
Eletroforese Capilar/métodos , Técnicas Analíticas Microfluídicas/métodos , Reação em Cadeia da Polimerase/métodos , Elementos Alu , Biotina , DNA , Feminino , Corantes Fluorescentes , Testes Genéticos , Humanos , Proteínas Imobilizadas , Limite de Detecção , Masculino , Microscopia de Fluorescência , Análise para Determinação do Sexo , Estreptavidina
11.
ACS Sens ; 6(5): 1831-1839, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33938745

RESUMO

Liquid biopsies are becoming popular for managing a variety of diseases due to the minimally invasive nature of their acquisition, thus potentially providing better outcomes for patients. Circulating tumor cells (CTCs) are among the many different biomarkers secured from a liquid biopsy, and a number of efficient platforms for their isolation and enrichment from blood have been reported. However, many of these platforms require manual sample handling, which can generate difficulties when translating CTC assays into the clinic due to potential sample loss, contamination, and the need for highly specialized operators. We report a system modularity chip for the analysis of rare targets (SMART-Chip) composed of three task-specific modules that can fully automate processing of CTCs. The modules were used for affinity selection of the CTCs from peripheral blood with subsequent photorelease, simultaneous counting, and viability determinations of the CTCs and staining/imaging of the CTCs for immunophenotyping. The modules were interconnected to a fluidic motherboard populated with valves, interconnects, pneumatic control channels, and a fluidic network. The SMART-Chip components were made from thermoplastics via microreplication, which lowers the cost of production making it amenable to clinical implementation. The utility of the SMART-Chip was demonstrated by processing blood samples secured from colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC) patients. We were able to affinity-select EpCAM expressing CTCs with high purity (0-3 white blood cells/mL of blood), enumerate the selected cells, determine their viability, and immunophenotype the cells. The assay could be completed in <4 h, while manual processing required >8 h.


Assuntos
Células Neoplásicas Circulantes , Neoplasias Pancreáticas , Contagem de Células , Separação Celular , Humanos , Biópsia Líquida , Neoplasias Pancreáticas/diagnóstico
12.
Lab Chip ; 10(23): 3255-64, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-20938506

RESUMO

Mixed-scale nano- and microfluidic networks were fabricated in thermoplastics using simple and robust methods that did not require the use of sophisticated equipment to produce the nanostructures. High-precision micromilling (HPMM) and photolithography were used to generate mixed-scale molding tools that were subsequently used for producing fluidic networks into thermoplastics such as poly(methyl methacrylate), PMMA, cyclic olefin copolymer, COC, and polycarbonate, PC. Nanoslit arrays were imprinted into the polymer using a nanoimprinting tool, which was composed of an optical mask with patterns that were 2-7 µm in width and a depth defined by the Cr layer (100 nm), which was deposited onto glass. The device also contained a microchannel network that was hot embossed into the polymer substrate using a metal molding tool prepared via HPMM. The mixed-scale device could also be used as a master to produce a polymer stamp, which was made from polydimethylsiloxane, PDMS, and used to generate the mixed-scale fluidic network in a single step. Thermal fusion bonding of the cover plate to the substrate at a temperature below their respective T(g) was accomplished by oxygen plasma treatment of both the substrate and cover plate, which significantly reduced thermally induced structural deformation during assembly: ∼6% for PMMA and ∼9% for COC nanoslits. The electrokinetic transport properties of double-stranded DNA (dsDNA) through the polymeric nanoslits (PMMA and COC) were carried out. In these polymer devices, the dsDNA demonstrated a field-dependent electrophoretic mobility with intermittent transport dynamics. DNA mobilities were found to be 8.2 ± 0.7 × 10(-4) cm(2) V(-1) s(-1) and 7.6 ± 0.6 × 10(-4) cm(2) V(-1) s(-1) for PMMA and COC, respectively, at a field strength of 25 V cm(-1). The extension factors for λ-DNA were 0.46 in PMMA and 0.53 in COC for the nanoslits (2-6% standard deviation).


Assuntos
DNA/química , Dispositivos Lab-On-A-Chip , Nanopartículas/química , Dimetilpolisiloxanos/química , Desenho de Equipamento , Teste de Materiais , Microfluídica , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Varredura/métodos , Plásticos , Polímeros/química , Propriedades de Superfície , Temperatura
13.
Anal Chem ; 82(7): 2844-9, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20218574

RESUMO

Low abundant (<100 cells mL(-1)) E. coli O157:H7 cells were isolated and enriched from environmental water samples using a microfluidic chip. The poly(methylmethacrylate), PMMA, chip contained 8 devices, each equipped with 16 curvilinear high aspect ratio channels that were covalently decorated with polyclonal anti-O157 antibodies (pAb) and could search for rare cells through a pAb mediated process. The chip could process independently 8 different samples or one sample using 8 different parallel inputs to increase volume processing throughput. After cell enrichment, cells were released and enumerated using benchtop real-time quantitative polymerase chain reaction (PCR), targeting genes which effectively discriminated the O157:H7 serotype from other nonpathogenic bacteria. The recovery of target cells from water samples was determined to be approximately 72%, and the limit-of-detection was found to be 6 colony forming units (cfu) using the slt1 gene as a reporter. We subsequently performed analysis of lake and wastewater samples. The simplicity in manufacturing and ease of operation makes this device attractive for the selection of pathogenic species from a variety of water supplies suspected of containing bacterial pathogens at extremely low frequencies.


Assuntos
Anticorpos Imobilizados/metabolismo , Escherichia coli O157/isolamento & purificação , Técnicas Analíticas Microfluídicas/métodos , Anticorpos Imobilizados/imunologia , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Polimetil Metacrilato/química , Sorotipagem , Microbiologia da Água
14.
Electrophoresis ; 31(6): 981-90, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20309932

RESUMO

We performed a series of multi-locus PCRs followed by the rapid and efficient microchip electrophoretic sorting of Alu products with LIF detection. Five polymorphic human-specific Alu insertions (RC5, A1, PV92, TPA and ACE) were used for inference of human ethnicity and two monomorphic Alu insertions for sex typing, one fixed on the X chromosome (AluSTXa) and the other on the Y chromosome (AluSTYa). These markers were used to generate unique DNA profiles for five different DNA samples. The PCR-based assays used primers that flank the insertion point to determine genotypes based on the presence or absence of the Alu element. A1, RC5, PV92, TPA and ACE were used for ethnicity determinations and have two alleles, each indicating the presence (+) or absence (-) of the Alu element on the paired chromosomes, which results in three genotypes (+/+, +/- or -/-). RC5 and A1 did not show ethnic heterogeneity resulting in a homozygous (-/-) genotype, which correctly inferred that DNA samples originating from a Caucasian male and an Asian male were not of African ancestry. The results from the five Alu markers indicated that these Alu loci could assist in identifying the individual's ethnicity using microchip electrophoresis in under 15 min of separation time. Using microchip electrophoresis and mixed genotype ratios, male DNA-to-female DNA of 1:9, corresponding to a ratio of Y-to-X chromosomes of 1:19, was also detected for both AluSTXa and AluSTYa to provide gender identification without requiring separation of female from male cells prior to the assay.


Assuntos
Elementos Alu/genética , Eletroforese em Microchip/métodos , Genética Forense/métodos , Grupos Raciais/genética , Análise para Determinação do Sexo/métodos , Etnicidade/genética , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase/métodos , Polimorfismo Genético
15.
Commun Biol ; 3(1): 613, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106557

RESUMO

Currently there is no in vitro diagnostic test for acute ischemic stroke (AIS), yet rapid diagnosis is crucial for effective thrombolytic treatment. We previously demonstrated the utility of CD8(+) T-cells' mRNA expression for AIS detection; however extracellular vesicles (EVs) were not evaluated as a source of mRNA for AIS testing. We now report a microfluidic device for the rapid and efficient affinity-enrichment of CD8(+) EVs and subsequent EV's mRNA analysis using droplet digital PCR (ddPCR). The microfluidic device contains a dense array of micropillars modified with anti-CD8α monoclonal antibodies that enriched 158 ± 10 nm sized EVs at 4.3 ± 2.1 × 109 particles/100 µL of plasma. Analysis of mRNA from CD8(+) EVs and their parental T-cells revealed correlation in the expression for AIS-specific genes in both cell lines and healthy donors. In a blinded study, 80% test positivity for AIS patients and controls was revealed with a total analysis time of 3.7 h.


Assuntos
Vesículas Extracelulares/fisiologia , Regulação da Expressão Gênica/fisiologia , AVC Isquêmico/diagnóstico , Dispositivos Lab-On-A-Chip , RNA Mensageiro/metabolismo , Biomarcadores , Isquemia Encefálica/metabolismo , Linhagem Celular , Humanos , RNA Mensageiro/genética , Linfócitos T
16.
Anal Chem ; 80(9): 3483-91, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18355091

RESUMO

We report a simple and effective method for the high-throughput purification of a variety of nucleic acids (NAs) from whole cell lysates or whole blood using a photactivated polycarbonate solid-phase reversible immobilization (PPC-SPRI) microfluidic chip. High-throughput operation was achieved by placing 96 purification beds, each containing an array of 3800 20 microm diameter posts, on a single 3" x 5" polycarbonate (PC) wafer fabricated by hot embossing. All beds were interconnected through a common microfluidic network that permitted parallel access through the use of a vacuum and syringe pump for delivery of immobilization buffer (IB) and effluent. The PPC-SPRI purification was accomplished by condensation of NAs onto a UV-modified PC surface in the presence of the IB comprised of polyethylene glycol, NaCl, and ethanol with a composition dependent on the length of the NAs to be isolated and the identity of the sample matrix. The performance of the device was validated by quantification of the recovered material following PCR (for DNA) or RT-PCR (for RNA). The extraction bed load capacity of NAs was 206 +/- 93 ng for gDNA and 165 +/- 81 ng for TRNA from Escherichia coli. Plate-to-plate variability was found to be 35 +/- 10%. The purification process was fast (<30 min) and easy to automate, and the low cost of wafer fabrication makes it appropriate for single-use applications.


Assuntos
DNA/isolamento & purificação , Microfluídica/métodos , Cimento de Policarboxilato/química , RNA/isolamento & purificação , Animais , DNA/sangue , DNA Bacteriano/isolamento & purificação , Eletroforese/métodos , Humanos , Microfluídica/instrumentação , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/isolamento & purificação , RNA Ribossômico/isolamento & purificação , RNA de Transferência/isolamento & purificação , Ratos , Espectrometria de Fluorescência/métodos
18.
Artigo em Inglês | MEDLINE | ID: mdl-29657983

RESUMO

Circulating tumor cells consist of phenotypically distinct subpopulations that originate from the tumor microenvironment. We report a circulating tumor cell dual selection assay that uses discrete microfluidics to select circulating tumor cell subpopulations from a single blood sample; circulating tumor cells expressing the established marker epithelial cell adhesion molecule and a new marker, fibroblast activation protein alpha, were evaluated. Both circulating tumor cell subpopulations were detected in metastatic ovarian, colorectal, prostate, breast, and pancreatic cancer patients and 90% of the isolated circulating tumor cells did not co-express both antigens. Clinical sensitivities of 100% showed substantial improvement compared to epithelial cell adhesion molecule selection alone. Owing to high purity (>80%) of the selected circulating tumor cells, molecular analysis of both circulating tumor cell subpopulations was carried out in bulk, including next generation sequencing, mutation analysis, and gene expression. Results suggested fibroblast activation protein alpha and epithelial cell adhesion molecule circulating tumor cells are distinct subpopulations and the use of these in concert can provide information needed to navigate through cancer disease management challenges.

20.
Lab Chip ; 14(1): 106-17, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23900277

RESUMO

The need to activate thermoplastic surfaces using robust and efficient methods has been driven by the fact that replication techniques can be used to produce microfluidic devices in a high production mode and at low cost, making polymer microfluidics invaluable for in vitro diagnostics, such as circulating tumor cell (CTC) analysis, where device disposability is critical to mitigate artifacts associated with sample carryover. Modifying the surface chemistry of thermoplastic devices through activation techniques can be used to increase the wettability of the surface or to produce functional scaffolds to allow for the covalent attachment of biologics, such as antibodies for CTC recognition. Extensive surface characterization tools were used to investigate UV activation of various surfaces to produce uniform and high surface coverage of functional groups, such as carboxylic acids in microchannels of different aspect ratios. We found that the efficiency of the UV activation process is highly dependent on the microchannel aspect ratio and the identity of the thermoplastic substrate. Colorimetric assays and fluorescence imaging of UV-activated microchannels following EDC/NHS coupling of Cy3-labeled oligonucleotides indicated that UV-activation of a PMMA microchannel with an aspect ratio of ~3 was significantly less efficient toward the bottom of the channel compared to the upper sections. This effect was a consequence of the bulk polymer's damping of the modifying UV radiation due to absorption artifacts. In contrast, this effect was less pronounced for COC. Moreover, we observed that after thermal fusion bonding of the device's cover plate to the substrate, many of the generated functional groups buried into the bulk rendering them inaccessible. The propensity of this surface reorganization was found to be higher for PMMA compared to COC. As an example of the effects of material and microchannel aspect ratios on device functionality, thermoplastic devices for the selection of CTCs from whole blood were evaluated, which required the immobilization of monoclonal antibodies to channel walls. From our results, we concluded the CTC yield and purity of isolated CTCs were dependent on the substrate material with COC producing the highest clinical yields for CTCs as well as better purities compared to PMMA.


Assuntos
Anticorpos Monoclonais/imunologia , Separação Celular/métodos , Células Neoplásicas Circulantes/metabolismo , Polímeros/química , Raios Ultravioleta , Animais , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Anticorpos Monoclonais/química , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Cicloparafinas/química , Humanos , Queratina-19/metabolismo , Queratina-8/metabolismo , Camundongos , Camundongos Nus , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Polímeros/efeitos da radiação , Polimetil Metacrilato/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA