Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 172(2): 1249-1258, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27550996

RESUMO

Cytokinin is a phytohormone that is well known for its roles in numerous plant growth and developmental processes, yet it has also been linked to abiotic stress response in a less defined manner. Arabidopsis (Arabidopsis thaliana) Cytokinin Response Factor 6 (CRF6) is a cytokinin-responsive AP2/ERF-family transcription factor that, through the cytokinin signaling pathway, plays a key role in the inhibition of dark-induced senescence. CRF6 expression is also induced by oxidative stress, and here we show a novel function for CRF6 in relation to oxidative stress and identify downstream transcriptional targets of CRF6 that are repressed in response to oxidative stress. Analysis of transcriptomic changes in wild-type and crf6 mutant plants treated with H2O2 identified CRF6-dependent differentially expressed transcripts, many of which were repressed rather than induced. Moreover, many repressed genes also show decreased expression in 35S:CRF6 overexpressing plants. Together, these findings suggest that CRF6 functions largely as a transcriptional repressor. Interestingly, among the H2O2 repressed CRF6-dependent transcripts was a set of five genes associated with cytokinin processes: (signaling) ARR6, ARR9, ARR11, (biosynthesis) LOG7, and (transport) ABCG14. We have examined mutants of these cytokinin-associated target genes to reveal novel connections to oxidative stress. Further examination of CRF6-DNA interactions indicated that CRF6 may regulate its targets both directly and indirectly. Together, this shows that CRF6 functions during oxidative stress as a negative regulator to control this cytokinin-associated module of CRF6-dependent genes and establishes a novel connection between cytokinin and oxidative stress response.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Citocininas/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Estresse Oxidativo , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Clorofila/química , Clorofila/metabolismo , Fluorescência , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Peróxido de Hidrogênio/farmacologia , Mutação , Oxidantes/farmacologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/genética , Plântula/metabolismo , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
2.
Nat Commun ; 11(1): 2170, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358503

RESUMO

Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Resistência à Doença/genética , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transcriptoma/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Parede Celular/química , Parede Celular/metabolismo , Endossomos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Complexo de Golgi/metabolismo , Proteínas de Membrana/genética , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/metabolismo , Plasmodioforídeos/patogenicidade , Via Secretória/genética , Solo , Proteínas de Transporte Vesicular/metabolismo
3.
Methods Mol Biol ; 1569: 1-29, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28265984

RESUMO

The history of auxin and cytokinin biology including the initial discoveries by father-son duo Charles Darwin and Francis Darwin (1880), and Gottlieb Haberlandt (1919) is a beautiful demonstration of unceasing continuity of research. Novel findings are integrated into existing hypotheses and models and deepen our understanding of biological principles. At the same time new questions are triggered and hand to hand with this new methodologies are developed to address these new challenges.


Assuntos
Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Transporte Biológico , Vias Biossintéticas , Citocininas/biossíntese , Citocininas/química , Regulação da Expressão Gênica de Plantas , História do Século XIX , História do Século XX , Ácidos Indolacéticos/química , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Ligação Proteica , Pesquisa/história , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA