Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nutr ; 146(12): 2468-2475, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27798330

RESUMO

BACKGROUND: Previous work demonstrated that a soy-dairy protein blend (PB) prolongs hyperaminoacidemia and muscle protein synthesis in young adults after resistance exercise. OBJECTIVE: We investigated the effect of PB in older adults. We hypothesized that PB would prolong hyperaminoacidemia, enhancing mechanistic target of rapamycin complex 1 (mTORC1) signaling and muscle protein anabolism compared with a whey protein isolate (WPI). METHODS: This double-blind, randomized controlled trial studied men 55-75 y of age. Subjects consumed 30 g protein from WPI or PB (25% soy, 25% whey, and 50% casein) 1 h after leg extension exercise (8 sets of 10 repetitions at 70% one-repetition maximum). Blood and muscle amino acid concentrations and basal and postexercise muscle protein turnover were measured by using stable isotopic methods. Muscle mTORC1 signaling was assessed by immunoblotting. RESULTS: Both groups increased amino acid concentrations (P < 0.05) and mTORC1 signaling after protein ingestion (P < 0.05). Postexercise fractional synthesis rate (FSR; P ≥ 0.05), fractional breakdown rate (FBR; P ≥ 0.05), and net balance (P = 0.08) did not differ between groups. WPI increased FSR by 67% (mean ± SEM: rest: 0.05% ± 0.01%; postexercise: 0.09% ± 0.01%; P < 0.05), decreased FBR by 46% (rest: 0.17% ± 0.01%; postexercise: 0.09% ± 0.03%; P < 0.05), and made net balance less negative (P < 0.05). PB ingestion did not increase FSR (rest: 0.07% ± 0.03%; postexercise: 0.09% ± 0.01%; P ≥ 0.05), tended to decrease FBR by 42% (rest: 0.25% ± 0.08%; postexercise: 0.15% ± 0.08%; P = 0.08), and made net balance less negative (P < 0.05). Within-group percentage of change differences were not different between groups for FSR, FBR, or net balance (P ≥ 0.05). CONCLUSIONS: WPI and PB ingestion after exercise in older men induced similar responses in hyperaminoacidemia, mTORC1 signaling, muscle protein synthesis, and breakdown. These data add new evidence for the use of whey or soy-dairy PBs as targeted nutritional interventions to counteract sarcopenia. This trial was registered at clinicaltrials.gov as NCT01847261.


Assuntos
Complexos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Soja/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas do Soro do Leite/farmacologia , Idoso , Envelhecimento , Bebidas/análise , Método Duplo-Cego , Exercício Físico , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Pessoa de Meia-Idade , Complexos Multiproteicos/genética , Músculo Esquelético/efeitos dos fármacos , Proteínas de Soja/química , Serina-Treonina Quinases TOR/genética
2.
J Nutr ; 146(9): 1660-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27466602

RESUMO

BACKGROUND: To our knowledge the efficacy of soy-dairy protein blend (PB) supplementation with resistance exercise training (RET) has not been evaluated in a longitudinal study. OBJECTIVE: Our aim was to determine the effect of PB supplementation during RET on muscle adaptation. METHODS: In this double-blind randomized clinical trial, healthy young men [18-30 y; BMI (in kg/m(2)): 25 ± 0.5] participated in supervised whole-body RET at 60-80% 1-repetition maximum (1-RM) for 3 d/wk for 12 wk with random assignment to daily receive 22 g PB (n = 23), whey protein (WP) isolate (n = 22), or an isocaloric maltodextrin (carbohydrate) placebo [(MDP) n = 23]. Serum testosterone, muscle strength, thigh muscle thickness (MT), myofiber cross-sectional area (mCSA), and lean body mass (LBM) were assessed before and after 6 and 12 wk of RET. RESULTS: All treatments increased LBM (P < 0.001). ANCOVA did not identify an overall treatment effect at 12 wk (P = 0.11). There tended to be a greater change in LBM from baseline to 12 wk in the PB group than in the MDP group (0.92 kg; 95% CI: -0.12, 1.95 kg; P = 0.09); however, changes in the WP and MDP groups did not differ. Pooling data from combined PB and WP treatments showed a trend for greater change in LBM from baseline to 12 wk compared with MDP treatment (0.69 kg; 95% CI: -0.08, 1.46 kg; P = 0.08). Muscle strength, mCSA, and MT increased (P < 0.05) similarly for all treatments and were not different (P > 0.10) between treatments. Testosterone was not altered. CONCLUSIONS: PB supplementation during 3 mo of RET tended to slightly enhance gains in whole-body and arm LBM, but not leg muscle mass, compared with RET without protein supplementation. Although protein supplementation minimally enhanced gains in LBM of healthy young men, there was no enhancement of gains in strength. This trial was registered at clinicaltrials.gov as NCT01749189.


Assuntos
Suplementos Nutricionais , Exercício Físico , Músculo Esquelético/efeitos dos fármacos , Treinamento Resistido , Proteínas do Soro do Leite/administração & dosagem , Adaptação Fisiológica , Adolescente , Adulto , Composição Corporal , Índice de Massa Corporal , Peso Corporal , Método Duplo-Cego , Humanos , Masculino , Força Muscular/efeitos dos fármacos , Testosterona/sangue , Adulto Jovem
3.
J Family Med Prim Care ; 12(10): 2385-2391, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38074239

RESUMO

Background: SARS-CoV-causing COVID-19 resulted in mortality, and the clinic-epidemiological profile at the time of admission of patients who died later could provide an insight into pathophysiological consequences due to infection. Method: Retrospective observational study of 64 RTPCR-confirmed COVID-19 non-survivors was conducted from April - June 2021 and January February 2022. Data were analyzed, and a P value<0.05 was taken as significant. Results: 60.94% and 39.06 % were males and females, and 26.57% & 73.43 % of patients had moderate and severe disease, respectively. Fever, cough, and dyspnea were the most common presenting symptoms. 78.12% and 21.88% had pre-existing (diabetes and hypertension were most common) and no co-morbidities, respectively. 65.62 & 17.19 % of patients had bilateral and unilateral ground glass opacities, respectively. Thrombocytopenia, lymphopenia, neutrophilia, elevated monocytes, and neutrophil-lymphocyte ratio (NLR) of 7.52 were hematological findings. D dimer was elevated. ABG showed low PaO2 and SPO2 %. ALT and AST were elevated. Tachycardia was also present. Compared to the first wave, no significant association of gender with severity was found. However, the percentage of male patients was higher. The association of the duration of stay and co-morbidity with disease severity was significant in both the first and subsequent waves of COVID-19. Conclusion: Co-morbidity, disease severity, and radiological lung opacities play a role in the outcome of COVID-19. The associated findings are hematological, renal, liver, cardiovascular, and arterial blood gas derangements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA