Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Toxicol Appl Pharmacol ; 462: 116381, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681128

RESUMO

Damage associated molecular patterns (DAMPs) are molecules released from dead/dying cells following toxicant and/or environmental exposures that activate the immune response through binding of pattern recognition receptors (PRRs). Excessive production of DAMPs or failed clearance leads to chronic inflammation and delayed inflammation resolution. One category of DAMPs are oxidized phospholipids (oxPLs) produced upon exposure to high levels of oxidative stress, such as following ozone (O3) induced inflammation. OxPLs are bound by multiple classes of PRRs that include scavenger receptors (SRs) such as SR class B-1 (SR-BI) and toll-like receptors (TLRs). Interactions between oxPLs and PRRs appear to regulate inflammation; however, the role of SR-BI in oxPL-induced lung inflammation has not been defined. Therefore, we hypothesize that SR-BI is critical in protecting the lung from oxPL-induced pulmonary inflammation/injury. To test this hypothesis, C57BL/6J (WT) female mice were dosed with oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (oxPAPC) by oropharyngeal aspiration which increased pulmonary SR-BI expression. Following oxPAPC exposure, SR-BI deficient (SR-BI-/-) mice exhibited increased lung pathology and inflammatory cytokine/chemokine production. Lipidomic analysis revealed that SR-BI-/- mice had an altered pulmonary lipidome prior to and following oxPAPC exposure, which correlated with increased oxidized phosphatidylcholines (PCs). Finally, we characterized TLR4-mediated activation of NF-κB following oxPAPC exposure and discovered that SR-BI-/- mice had increased TLR4 mRNA expression in lung tissue and macrophages, increased nuclear p65, and decreased cytoplasmic IκBα. Overall, we conclude that SR-BI is required for limiting oxPAPC-induced lung pathology by maintaining lipid homeostasis, reducing oxidized PCs, and attenuating TLR4-NF-κB activation, thereby preventing excessive and persistent inflammation.


Assuntos
Fosfolipídeos , Pneumonia , Animais , Feminino , Camundongos , Proteínas de Transporte , Inflamação/induzido quimicamente , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/prevenção & controle , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Receptor 4 Toll-Like/metabolismo
2.
Part Fibre Toxicol ; 20(1): 15, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085867

RESUMO

BACKGROUND: Microbial dysbiosis is a potential mediator of air pollution-induced adverse outcomes. However, a systemic comparison of the lung and gut microbiome alterations and lung-gut axis following air pollution exposure is scant. In this study, we exposed male C57BL/6J mice to inhaled air, CB (10 mg/m3), O3 (2 ppm) or CB + O3 mixture for 3 h/day for either one day or four consecutive days and were euthanized 24 h post last exposure. The lung and gut microbiome were quantified by 16 s sequencing. RESULTS: Multiple CB + O3 exposures induced an increase in the lung inflammatory cells (neutrophils, eosinophils and B lymphocytes), reduced absolute bacterial load in the lungs and increased load in the gut. CB + O3 exposure was more potent as it decreased lung microbiome alpha diversity just after a single exposure. CB + O3 co-exposure uniquely increased Clostridiaceae and Prevotellaceae in the lungs. Serum short chain fatty acids (SCFA) (acetate and propionate) were increased significantly only after CB + O3 co-exposure. A significant increase in SCFA producing bacterial families (Ruminococcaceae, Lachnospiraceae, and Eubacterium) were also observed in the gut after multiple exposures. Co-exposure induced significant alterations in the gut derived metabolite receptors/mediator (Gcg, Glp-1r, Cck) mRNA expression. Oxidative stress related mRNA expression in lungs, and oxidant levels in the BALF, serum and gut significantly increased after CB + O3 exposures. CONCLUSION: Our study confirms distinct gut and lung microbiome alterations after CB + O3 inhalation co-exposure and indicate a potential homeostatic shift in the gut microbiome to counter deleterious impacts of environmental exposures on metabolic system.


Assuntos
Microbiota , Ozônio , Camundongos , Animais , Masculino , Ozônio/toxicidade , Fuligem/toxicidade , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , RNA Mensageiro/metabolismo
3.
Part Fibre Toxicol ; 19(1): 18, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35260159

RESUMO

BACKGROUND: Pregnancy is associated with many rapid biological adaptations that support healthy development of the growing fetus. One of which is critical to fetal health and development is the coordination between maternal liver derived substrates and vascular delivery. This crucial adaptation can be potentially derailed by inhalation of toxicants. Engineered nanomaterials (ENM) are commonly used in household and industrial products as well as in medicinal applications. As such, the potential risk of exposure remains a concern, especially during pregnancy. We have previously reported that ENM inhalation leads to upregulation in the production of oxidative species. Therefore, we aimed to determine if F0 dam maternal nano-TiO2 inhalation exposure (exclusively) resulted in altered H2O2 production capacity and changes in downstream redox pathways in the F0 dams and subsequent F1 pups. Additionally, we investigated whether this persisted into adulthood within the F1 generation and how this impacted F1 gestational outcomes and F2 fetal health and development. We hypothesized that maternal nano-TiO2 inhalation exposure during gestation in the F0 dams would result in upregulated H2O2 production in the F0 dams as well as her F1 offspring. Additionally, this toxicological insult would result in gestational vascular dysfunction in the F1 dams yielding smaller F2 generation pups. RESULTS: Our results indicate upregulation of hepatic H2O2 production capacity in F0 dams, F1 offspring at 8 weeks and F1 females at gestational day 20. H2O2 production capacity was accompanied by a twofold increase in phosphorylation of the redox sensitive transcription factor NF-κB. In cell culture, naïve hepatocytes exposed to F1-nano-TiO2 plasma increased H2O2 production. Overnight exposure of these hepatocytes to F1 plasma increased H2O2 production capacity in a partially NF-κB dependent manner. Pregnant F1- nano-TiO2 females exhibited estrogen disruption (12.12 ± 3.1 pg/ml vs. 29.81 ± 8.8 pg/ml sham-control) and vascular dysfunction similar to their directly exposed mothers. F1-nano-TiO2 uterine artery H2O2 production capacity was also elevated twofold. Dysfunctional gestational outcomes in the F1-nano-TiO2 dams resulted in smaller F1 (10.22 ± 0.6 pups vs. sham-controls 12.71 ± 0.96 pups) and F2 pups (4.93 ± 0.47 g vs. 5.78 ± 0.09 g sham-control pups), and fewer F1 male pups (4.38 ± 0.3 pups vs. 6.83 ± 0.84 sham-control pups). CONCLUSION: In conclusion, this manuscript provides critical evidence of redox dysregulation across generations following maternal ENM inhalation. Furthermore, dysfunctional gestational outcomes are observed in the F1-nano-TiO2 generation and impact the development of F2 offspring. In total, this data provides strong initial evidence that maternal ENM exposure has robust biological impacts that persists in at least two generations.


Assuntos
Exposição por Inalação , NF-kappa B , Feminino , Humanos , Peróxido de Hidrogênio , Exposição por Inalação/efeitos adversos , Masculino , Oxirredução , Gravidez , Titânio
4.
Arch Toxicol ; 96(12): 3201-3217, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35984461

RESUMO

Thermal spray coating is an industrial process in which molten metal is sprayed at high velocity onto a surface as a protective coating. An automated electric arc wire thermal spray coating aerosol generator and inhalation exposure system was developed to simulate an occupational exposure and, using this system, male Sprague-Dawley rats were exposed to stainless steel PMET720 aerosols at 25 mg/m3 × 4 h/day × 9 day. Lung injury, inflammation, and cytokine alteration were determined. Resolution was assessed by evaluating these parameters at 1, 7, 14 and 28 d after exposure. The aerosols generated were also collected and characterized. Macrophages were exposed in vitro over a wide dose range (0-200 µg/ml) to determine cytotoxicity and to screen for known mechanisms of toxicity. Welding fumes were used as comparative particulate controls. In vivo lung damage, inflammation and alteration in cytokines were observed 1 day post exposure and this response resolved by day 7. Alveolar macrophages retained the particulates even after 28 day post-exposure. In line with the pulmonary toxicity findings, in vitro cytotoxicity and membrane damage in macrophages were observed only at the higher doses. Electron paramagnetic resonance showed in an acellular environment the particulate generated free radicals and a dose-dependent increase in intracellular oxidative stress and NF-kB/AP-1 activity was observed. PMET720 particles were internalized via clathrin and caveolar mediated endocytosis as well as actin-dependent pinocytosis/phagocytosis. The results suggest that compared to stainless steel welding fumes, the PMET 720 aerosols were not as overtly toxic, and the animals recovered from the acute pulmonary injury by 7 days.


Assuntos
Poluentes Ocupacionais do Ar , Soldagem , Ratos , Animais , Masculino , Aço Inoxidável/toxicidade , Poluentes Ocupacionais do Ar/toxicidade , NF-kappa B , Actinas , Fator de Transcrição AP-1 , Ratos Sprague-Dawley , Aerossóis e Gotículas Respiratórios , Soldagem/métodos , Exposição por Inalação/efeitos adversos , Pulmão , Poeira , Inflamação/patologia , Citocinas , Clatrina/farmacologia
5.
Part Fibre Toxicol ; 18(1): 44, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911549

RESUMO

BACKGROUND: Air pollution is a complex mixture of particles and gases, yet current regulations are based on single toxicant levels failing to consider potential interactive outcomes of co-exposures. We examined transcriptomic changes after inhalation co-exposure to a particulate and a gaseous component of air pollution and hypothesized that co-exposure would induce significantly greater impairments to mitochondrial bioenergetics. A whole-body inhalation exposure to ultrafine carbon black (CB), and ozone (O3) was performed, and the impact of single and multiple exposures was studied at relevant deposition levels. C57BL/6 mice were exposed to CB (10 mg/m3) and/or O3 (2 ppm) for 3 h (either a single exposure or four independent exposures). RNA was isolated from lungs and mRNA sequencing performed using the Illumina HiSeq. Lung pathology was evaluated by histology and immunohistochemistry. Electron transport chain (ETC) activities, electron flow, hydrogen peroxide production, and ATP content were assessed. RESULTS: Compared to individual exposure groups, co-exposure induced significantly greater neutrophils and protein levels in broncho-alveolar lavage fluid as well as a significant increase in mRNA expression of oxidative stress and inflammation related genes. Similarly, a significant increase in hydrogen peroxide production was observed after co-exposure. After single and four exposures, co-exposure revealed a greater number of differentially expressed genes (2251 and 4072, respectively). Of these genes, 1188 (single exposure) and 2061 (four exposures) were uniquely differentially expressed, with 35 mitochondrial ETC mRNA transcripts significantly impacted after four exposures. Both O3 and co-exposure treatment significantly reduced ETC maximal activity for complexes I (- 39.3% and - 36.2%, respectively) and IV (- 55.1% and - 57.1%, respectively). Only co-exposure reduced ATP Synthase activity (- 35.7%) and total ATP content (30%). Further, the ability for ATP Synthase to function is limited by reduced electron flow (- 25%) and translation of subunits, such as ATP5F1, following co-exposure. CONCLUSIONS: CB and O3 co-exposure cause unique transcriptomic changes in the lungs that are characterized by functional deficits to mitochondrial bioenergetics. Alterations to ATP Synthase function and mitochondrial electron flow underly a pathological adaptation to lung injury induced by co-exposure.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/toxicidade , Animais , Exposição por Inalação/efeitos adversos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias , Ozônio/toxicidade , Fuligem/toxicidade , Transcriptoma
6.
Part Fibre Toxicol ; 17(1): 60, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243293

RESUMO

BACKGROUND: Inhalation of multi-walled carbon nanotubes (MWCNTs) poses a potential risk to human health. In order to safeguard workers and consumers, the toxic properties of MWCNTs need to be identified. Functionalization has been shown to either decrease or increase MWCNT-related pulmonary injury, depending on the type of modification. We, therefore, investigated both acute and chronic pulmonary toxicity of a library of MWCNTs derived from a common pristine parent compound (NC7000). METHODS: MWCNTs were thermally or chemically purified and subsequently surface functionalized by carboxylation or amination. To evaluate pulmonary toxicity, male C57BL6 mice were dosed via oropharyngeal aspiration with either 1.6 or 4 mg/kg of each MWCNT type. Mitsui-7 MWCNT was used as a positive control. Necropsy was performed at days 3 and 60 post-exposure to collect bronchoalveolar lavage fluid (BALF) and lungs. RESULTS: At day 3 all MWCNTs increased the number of neutrophils in BALF. Chemical purification had a greater effect on pro-inflammatory cytokines (IL-1ß, IL-6, CXCL1) in BALF, while thermal purification had a greater effect on pro-fibrotic cytokines (CCL2, OPN, TGF-ß1). At day 60, thermally purified, carboxylated MWCNTs had the strongest effect on lymphocyte numbers in BALF. Thermally purified MWCNTs caused the greatest increase in LDH and total protein in BALF. Furthermore, the thermally purified and carboxyl- or amine-functionalized MWCNTs caused the greatest number of granulomatous lesions in the lungs. The physicochemical characteristics mainly associated with increased toxicity of the thermally purified derivatives were decreased surface defects and decreased amorphous content as indicated by Raman spectroscopy. CONCLUSIONS: These data demonstrate that the purification method is an important determinant of lung toxicity induced by carboxyl- and amine-functionalized MWCNTs.


Assuntos
Poluentes Atmosféricos/toxicidade , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/química , Citocinas/metabolismo , Exposição por Inalação , Lesão Pulmonar , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta1/metabolismo
7.
Part Fibre Toxicol ; 14(1): 44, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-29132433

RESUMO

BACKGROUND: Multi-walled carbon nanotubes (MWCNTs) are engineered nanomaterials used for a variety of industrial and consumer products. Their high tensile strength, hydrophobicity, and semi-conductive properties have enabled many novel applications, increasing the possibility of accidental nanotube inhalation by either consumers or factory workers. While MWCNT inhalation has been previously shown to cause inflammation and pulmonary fibrosis at high doses, the susceptibility of differentiating bronchial epithelia to MWCNT exposure remains unexplored. In this study, we investigate the effect of MWCNT exposure on cilia development in a differentiating air-liquid interface (ALI) model. Primary bronchial epithelial cells (BECs) were isolated from human donors via bronchoscopy and treated with non-cytotoxic doses of MWCNTs in submerged culture for 24 h. Cultures were then allowed to differentiate in ALI for 28 days in the absence of further MWCNT exposure. At 28 days, mucociliary differentiation endpoints were assessed, including whole-mount immunofluorescent staining, histological, immunohistochemical and ultrastructural analysis, gene expression, and cilia beating analysis. RESULTS: We found a reduction in the prevalence and beating of ciliated cells in MWCNT-treated cultures, which appeared to be caused by a disruption of cellular microtubules and cytoskeleton during ciliogenesis and basal body docking. Expression of gene markers of mucociliary differentiation, such as FOXJ1 and MUC5AC/B, were not affected by treatment. Colocalization of basal body marker CEP164 with γ-tubulin during days 1-3 of ciliogenesis, as well as abundance of basal bodies up to day 14, were attenuated by treatment with MWCNTs. CONCLUSIONS: Our results suggest that a single exposure of bronchial cells to MWCNT during a vulnerable period before differentiation may impair their ability to develop into fully functional ciliated cells.


Assuntos
Brônquios/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Axonema/efeitos dos fármacos , Axonema/patologia , Brônquios/metabolismo , Brônquios/patologia , Células Cultivadas , Cílios/efeitos dos fármacos , Cílios/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Proteínas dos Microtúbulos/metabolismo , Movimento/efeitos dos fármacos , Cultura Primária de Células , Medição de Risco , Fatores de Tempo , Tubulina (Proteína)/metabolismo
8.
Part Fibre Toxicol ; 11: 28, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24915862

RESUMO

BACKGROUND: In vivo studies have demonstrated the ability of multi-walled carbon nanotubes (MWCNT) to induce airway remodeling, a key feature of chronic respiratory diseases like asthma and chronic obstructive pulmonary disease. However, the mechanism leading to remodeling is poorly understood. Particularly, there is limited insight about the role of airway epithelial injury in these changes. OBJECTIVES: We investigated the mechanism of MWCNT-induced primary human bronchial epithelial (HBE) cell injury and its contribution in inducing a profibrotic response. METHODS: Primary HBE cells were exposed to thoroughly characterized MWCNTs (1.5-24 µg/mL equivalent to 0.37-6.0 µg/cm2) and MRC-5 human lung fibroblasts were exposed to 1:4 diluted conditioned medium from these cells. Flow cytometry, ELISA, immunostainings/immunoblots and PCR analyses were employed to study cellular mechanisms. RESULTS: MWCNT induced NLRP3 inflammasome dependent pyroptosis in HBE cells in a time- and dose-dependent manner. Cell death and cytokine production were significantly reduced by antioxidants, siRNA to NLRP3, a caspase-1 inhibitor (z-WEHD-FMK) or a cathepsin B inhibitor (CA-074Me). Conditioned medium from MWCNT-treated HBE cells induced significant increase in mRNA expression of pro-fibrotic markers (TIMP-1, Tenascin-C, Procollagen 1, and Osteopontin) in human lung fibroblasts, without a concomitant change in expression of TGF-beta. Induction of pro-fibrotic markers was significantly reduced when IL-1ß, IL-18 and IL-8 neutralizing antibodies were added to the conditioned medium or when conditioned medium from NLRP3 siRNA transfected HBE cells was used. CONCLUSIONS: Taken together these results demonstrate induction of a NLRP3 inflammasome dependent but TGF-beta independent pro-fibrotic response after MWCNT exposure.


Assuntos
Células Epiteliais/patologia , Fibroblastos/patologia , Inflamação/patologia , Nanotubos de Carbono/toxicidade , Fibrose Pulmonar/patologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Meios de Cultivo Condicionados , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Inflamação/induzido quimicamente , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Suspensões
9.
Adv Exp Med Biol ; 811: 111-34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24683030

RESUMO

A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.


Assuntos
Espaço Intracelular/metabolismo , Nanoestruturas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Humanos , Nanoestruturas/química , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ligação Proteica , Proteínas/metabolismo
10.
J Xenobiot ; 14(4): 1595-1612, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39449427

RESUMO

Growing evidence suggests physiological and pathological functions of lung and gut microbiomes in various pathologies. Epidemiological and experimental data associate air pollution exposure with host microbial dysbiosis in the lungs and gut. Air pollution through increased reactive oxygen species generation, the disruption of epithelial barrier integrity, and systemic inflammation modulates microbial imbalance. Microbiome balance is crucial in regulating inflammation and metabolic pathways to maintain health. Microbiome dysbiosis is proposed as a potential mechanism for the air-pollution-induced modulation of pulmonary and systemic disorders. Microbiome-based therapeutic approaches are increasingly gaining attention and could have added value in promoting lung health. This review summarizes and discusses air-pollution-mediated microbiome alterations in the lungs and gut in humans and mice and elaborates on their role in health and disease. We discuss and summarize the current literature, highlight important mechanisms that lead to microbial dysbiosis, and elaborate on pathways that potentially link lung and lung microbiomes in the context of environmental exposures. Finally, we discuss the lung-liver-gut axis and its potential pathophysiological implications in air-pollution-mediated pathologies through microbial dysbiosis.

11.
bioRxiv ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39211175

RESUMO

Gastric cancer is the fifth most common cancer and the fifth leading cause of cancer deaths worldwide. Chronic infection by the bacterium Helicobacter pylori is the most prominent gastric cancer risk factor, but only 1-3% of infected individuals will develop gastric cancer. Cigarette smoking is another independent gastric cancer risk factor, and H. pylori- infected smokers are at a 2-11-fold increased risk of gastric cancer development, but the direct impacts of cigarette smoke on H. pylori pathogenesis remain unknown. In this study, male C57BL/6 mice were infected with H. pylori and began smoking within one week of infection. The mice were exposed to cigarette smoke (CS) five days/week for 8 weeks. CS exposure had no notable impact on gross gastric morphology or inflammatory status compared to filtered-air (FA) exposed controls in mock-infected mice. However, CS exposure significantly blunted H. pylori- induced gastric inflammatory responses, reducing gastric atrophy and pyloric metaplasia development. Despite blunting these classic pathological features of H. pylori infection, CS exposures increased DNA damage within the gastric epithelial cells and accelerated H. pylori- induced dysplasia onset in the INS-GAS gastric cancer model. These data suggest that cigarette smoking may clinically silence classic clinical symptoms of H. pylori infection but enhance the accumulation of mutations and accelerate gastric cancer initiation.

12.
Discov Nano ; 19(1): 4, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175336

RESUMO

Acetalated dextran (Ac-Dex) nanoparticles are currently of immense interest due to their sharp pH-responsive nature and high biodegradability. Ac-Dex nanoparticles are often formulated through single- or double-emulsion methods utilizing polyvinyl alcohol as the stabilizer. The emulsion methods utilize toxic organic solvents such as dichloromethane or chloroform and require multi-step processing to form stable Ac-Dex nanoparticles. Here, we introduce a simple flash nanoprecipitation (FNP) approach that utilizes a confined impinging jet mixer and a non-toxic solvent, ethanol, to form Ac-Dex nanoparticles rapidly. Ac-Dex nanoparticles were stabilized using nonionic PEGylated surfactants, D-α-Tocopherol polyethylene glycol succinate (TPGS), or Pluronic (F-127). Ac-Dex nanoparticles formed using FNP were highly monodisperse and stably encapsulated a wide range of payloads, including hydrophobic, hydrophilic, and macromolecules. When lyophilized, Ac-Dex TPGS nanoparticles remained stable for at least one year with greater than 80% payload retention. Ac-Dex nanoparticles were non-toxic to cells and achieved intracellular release of payloads into the cytoplasm. In vivo studies demonstrated a predominant biodistribution of Ac-Dex TPGS nanoparticles in the liver, lungs, and spleen after intravenous administration. Taken together, the FNP technique allows easy fabrication and loading of Ac-Dex nanoparticles that can precisely release payloads into intracellular environments for diverse therapeutic applications. pH-responsive Acetalateddextran can be formulated using nonionic surfactants, such as TPGS or F-127, for intracellular release of payloads. Highly monodisperse and stable nanoparticles can be created through the simple, scalable flash nanoprecipitation technique, which utilizes a confined impingement jet mixer.

13.
Redox Biol ; 76: 103330, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39244793

RESUMO

The ability of air pollution to induce acute exacerbation of asthma is well documented. However, the ability of ozone (O3), the most reactive gaseous component of air pollution, to function as a modulator during sensitization is not well established. C57BL/6 J male mice were intranasally sensitized to house dust mite (HDM) (40 µg/kg) for 3 weeks on alternate days in parallel with once-a-week O3 exposure (1 ppm). Mice were euthanized 24 h following the last HDM challenge. Lung lavage, histology, lung function (both forced oscillation and forced expiration-based), immune cell profiling, inflammation (pulmonary and systemic), and immunoglobulin production were assessed. Compared to HDM alone, HDM + O3 leads to a significant increase in peribronchial inflammation (p < 0.01), perivascular inflammation (p < 0.001) and methacholine-provoked large airway hyperreactivity (p < 0.05). Serum total IgG and IgE and HDM-specific IgG1 were 3-5 times greater in HDM + O3 co-exposure compared to PBS and O3-exposed groups. An increase in activated/mature lung total and monocyte-derived dendritic cells (p < 0.05) as well as T-activated, and T memory lymphocyte subset numbers (p < 0.05) were noted in the HDM + O3 group compared to HDM alone group. Concurrent O3 inhalation and HDM sensitization also caused significantly greater (p < 0.05) lung tissue interleukin-17 pathway gene expression and mediator levels in the serum. Redox imbalance was manifested by impaired lung antioxidant defense and increased oxidants. O3 inhalation during allergic sensitization coalesces in generating a significantly worse TH17 asthmatic phenotype.


Assuntos
Asma , Ozônio , Pyroglyphidae , Animais , Ozônio/efeitos adversos , Ozônio/administração & dosagem , Pyroglyphidae/imunologia , Asma/imunologia , Asma/etiologia , Asma/metabolismo , Asma/patologia , Asma/induzido quimicamente , Camundongos , Masculino , Fenótipo , Pulmão/imunologia , Pulmão/patologia , Pulmão/metabolismo , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
14.
Front Toxicol ; 5: 1096173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950144

RESUMO

The placenta plays a critical role in nutrient-waste exchange between the maternal and fetal circulations, thus functioning as an interface that profoundly impacts fetal growth and development. The placenta has long been considered an asexual organ, but, due to its embryonic origin it shares the same sex as the fetus. Exposures to toxicant such as diesel exhaust, have been shown to result in sexually dimorphic outcomes like decreased placental mass in exposed females. Therefore, we hypothesize that maternal nano-TiO2 inhalation exposure during gestation alters placental hemodynamics in a sexually dimorphic manner. Pregnant Sprague-Dawley rats were exposed from gestational day 10-19 to nano-TiO2 aerosols (12.17 ± 1.69 mg/m3) or filtered air (sham-control). Dams were euthanized on GD20, and fetal tissue was collected based on fetal sex: whole placentas, placental junctional zone (JZ), and placental labyrinth zone (LZ). Fetal mass, placental mass, and placental zone percent areas were assessed for sex-based differences. Exposed fetal females were significantly smaller compared to their exposed male counterparts (2.65 ± 0.03 g vs 2.78 ± 0.04 g). Nano-TiO2 exposed fetal females had a significantly decreased percent junctional zone area compared to the sham-control females (24.37 ± 1.30% vs 30.39 ± 1.54%). The percent labyrinth zone area was significantly increased for nano-TiO2 females compared to sham-control females (75.63 ± 1.30% vs 69.61 ± 1.54%). Placental flow and hemodynamics were assessed with a variety of vasoactive substances. It was found that nano-TiO2 exposed fetal females only had a significant decrease in outflow pressure in the presence of the thromboxane (TXA2) mimetic, U46619, compared to sham-control fetal females (3.97 ± 1.30 mm Hg vs 9.10 ± 1.07 mm Hg) and nano-TiO2 fetal males (9.96 ± 0.66 mm Hg). Maternal nano-TiO2 inhalation exposure has a greater effect on fetal female mass, placental zone mass and area, and adversely impacts placental vasoreactivity. This may influence the female growth and development later in life, future studies need to further study the impact of maternal nano-TiO2 inhalation exposure on zone specific mechanisms.

15.
Toxicol Sci ; 191(1): 61-78, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36303316

RESUMO

Air pollution accounts for more than 7 million premature deaths worldwide. Using ultrafine carbon black (CB) and ozone (O3) as a model for an environmental co-exposure scenario, the dose response relationships in acute pulmonary injury and inflammation were determined by generating, characterizing, and comparing stable concentrations of CB aerosols (2.5, 5.0, 10.0 mg/m3), O3 (0.5, 1.0, 2.0 ppm) with mixture CB + O3 (2.5 + 0.5, 5.0 + 1.0, 10.0 + 2.0). C57BL6 male mice were exposed for 3 h by whole body inhalation and acute toxicity determined after 24 h. CB itself did not cause any alteration, however, a dose response in pulmonary injury/inflammation was observed with O3 and CB + O3. This increase in response with mixtures was not dependent on the uptake but was due to enhanced reactivity of the particles. Benchmark dose modeling showed several-fold increase in potency with CB + O3 compared with CB or O3 alone. Principal component analysis provided insight into response relationships between various doses and treatments. There was a significant correlation in lung responses with charge-based size distribution, total/alveolar deposition, oxidant generation, and antioxidant depletion potential. Lung tissue gene/protein response demonstrated distinct patterns that are better predicted by either particle dose/aerosol responses (interleukin-1ß, keratinocyte chemoattractant, transforming growth factor beta) or particle reactivity (thymic stromal lymphopoietin, interleukin-13, interleukin-6). Hierarchical clustering showed a distinct signature with high dose and a similarity in mRNA expression pattern of low and medium doses of CB + O3. In conclusion, we demonstrate that the biological outcomes from CB + O3 co-exposure are significantly greater than individual exposures over a range of aerosol concentrations and aerosol characteristics can predict biological outcome.


Assuntos
Poluentes Atmosféricos , Pneumopatias , Lesão Pulmonar , Ozônio , Pneumonia , Camundongos , Animais , Masculino , Ozônio/toxicidade , Fuligem/toxicidade , Lesão Pulmonar/metabolismo , Aerossóis e Gotículas Respiratórios , Pneumopatias/induzido quimicamente , Pulmão , Pneumonia/metabolismo , Inflamação/metabolismo , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/metabolismo
16.
Part Fibre Toxicol ; 9: 15, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22621278

RESUMO

We determined the ability of a model nanoparticle (NP) (titanium dioxide, TiO(2)) to modulate sensitization induced by a known potent dermal sensitizer (dinitrochlorobenzene) using a variant of the local lymph node assay called lymph node proliferation assay.BALB/c mice received sub-cutaneous injections of vehicle (2.5 mM sodium citrate), TiO(2) NPs (0.004, 0.04 or 0.4 mg/ml) or pigment particles (0.04 mg/ml) both stabilized in sodium citrate buffer at the base of each ear (2x50µl), before receiving dermal applications (on both ears) of 2,4-Dinitrochlorobenzene (DNCB) (2x25µl of 0.1%) or its vehicle (acetone olive oil - AOO (4:1)) on days 0, 1 and 2. On day 5, the stimulation index (SI) was calculated as a ratio of (3)HTdR incorporation in lymphocytes from DNBC-treated mice and AOO-treated controls. In a second experiment the EC(3)-value for DNCB (0 to 0.1%) was assessed in the absence or presence of 0.04 mg/ml TiO(2). In a third experiment, the lymphocyte subpopulations and the cytokine secretion profile were analyzed after TiO(2) (0.04 mg/ml) and DNCB (0.1%) treatment. Injection of NPs in AOO-treated control mice did not have any effect on lymph node (LN) proliferation. DNCB sensitization resulted in LN proliferation, which was further increased by injection of TiO(2) NPs before DNCB sensitization. The EC(3) of DNCB, with prior injection of vehicle control was 0.041%, while injection with TiO(2) decreased the EC(3) of DNCB to 0.015%. TiO(2) NPs pre-treatment did not alter the lymphocyte subpopulations, but significantly increased the level of IL-4 and decreased IL-10 production in DNCB treated animals.In conclusion, our study demonstrates that administration of nano-TiO(2) increases the dermal sensitization potency of DNCB, by augmenting a Th(2) response, showing the immunomodulatory abilities of NPs.


Assuntos
Fatores Imunológicos/administração & dosagem , Linfonodos/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Titânio/administração & dosagem , Administração Cutânea , Animais , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Dinitroclorobenzeno/administração & dosagem , Dinitroclorobenzeno/farmacologia , Orelha Externa/efeitos dos fármacos , Injeções Subcutâneas , Irritantes/administração & dosagem , Irritantes/farmacologia , Linfonodos/imunologia , Linfonodos/patologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Linfócitos/patologia , Camundongos , Camundongos Endogâmicos BALB C
17.
Toxicol Sci ; 188(2): 219-233, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35642938

RESUMO

Pregnancy requires rapid adaptations in the uterine microcirculation to support fetal development. Nanomaterial inhalation is associated with cardiovascular dysfunction, which may impair gestation. We have shown that maternal nano-titanium dioxide (nano-TiO2) inhalation impairs microvascular endothelial function in response to arachidonic acid and thromboxane (TXA2) mimetics. However, the mechanisms underpinning this process are unknown. Therefore, we hypothesize that maternal nano-TiO2 inhalation during gestation results in uterine microvascular prostacyclin (PGI2) and TXA2 dysfunction. Pregnant Sprague-Dawley rats were exposed from gestational day 10-19 to nano-TiO2 aerosols (12.17 ± 1.67 mg/m3) or filtered air (sham-control). Dams were euthanized on gestational day 20, and serum, uterine radial arterioles, implantation sites, and lungs were collected. Serum was assessed for PGI2 and TXA2 metabolites. TXB2, the stable TXA2 metabolite, was significantly decreased in nano-TiO2 exposed dams (597.3 ± 84.4 vs 667.6 ± 45.6 pg/ml), whereas no difference was observed for 6-keto-PGF1α, the stable PGI2 metabolite. Radial arteriole pressure myography revealed that nano-TiO2 exposure caused increased vasoconstriction to the TXA2 mimetic, U46619, compared with sham-controls (-41.3% ± 4.3% vs -16.8% ± 3.4%). Nano-TiO2 exposure diminished endothelium-dependent vasodilation to carbaprostacyclin, a PGI2 receptor agonist, compared with sham-controls (30.0% ± 9.0% vs 53.7% ± 6.0%). Maternal nano-TiO2 inhalation during gestation decreased nano-TiO2 female pup weight when compared with sham-control males (3.633 ± 0.064 vs 3.995 ± 0.124 g). Augmented TXA2 vasoconstriction and decreased PGI2 vasodilation may lead to decreased placental blood flow and compromise maternofetal exchange of waste and nutrients, which could ultimately impact fetal health outcomes.


Assuntos
Nanoestruturas , Prostaglandina-Endoperóxido Sintases , Animais , Feminino , Feto , Masculino , Placenta , Gravidez , Ratos , Ratos Sprague-Dawley
18.
Redox Biol ; 56: 102465, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36116160

RESUMO

BACKGROUND: The pathophysiologic significance of redox imbalance is unquestionable as numerous reports and topic reviews indicate alterations in redox parameters during corona virus disease 2019 (COVID-19). However, a more comprehensive understanding of redox-related parameters in the context of COVID-19-mediated inflammation and pathophysiology is required. METHODS: COVID-19 subjects (n = 64) and control subjects (n = 19) were enrolled, and blood was drawn within 72 h of diagnosis. Serum multiplex assays and peripheral blood mRNA sequencing was performed. Oxidant/free radical (electron paramagnetic resonance (EPR) spectroscopy, nitrite-nitrate assay) and antioxidant (ferrous reducing ability of serum assay and high-performance liquid chromatography) were performed. Multivariate analyses were performed to evaluate potential of indicated parameters to predict clinical outcome. RESULTS: Significantly greater levels of multiple inflammatory and vascular markers were quantified in the subjects admitted to the ICU compared to non-ICU subjects. Gene set enrichment analyses indicated significant enhancement of oxidant related pathways and biochemical assays confirmed a significant increase in free radical production and uric acid reduction in COVID-19 subjects. Multivariate analyses confirmed a positive association between serum levels of VCAM-1, ICAM-1 and a negative association between the abundance of one electron oxidants (detected by ascorbate radical formation) and mortality in COVID subjects while IL-17c and TSLP levels predicted need for intensive care in COVID-19 subjects. CONCLUSION: Herein we demonstrate a significant redox imbalance during COVID-19 infection affirming the potential for manipulation of oxidative stress pathways as a new therapeutic strategy COVID-19. However, further work is requisite for detailed identification of oxidants (O2•-, H2O2 and/or circulating transition metals such as Fe or Cu) contributing to this imbalance to avoid the repetition of failures using non-specific antioxidant supplementation.


Assuntos
COVID-19 , Antioxidantes/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres , Humanos , Peróxido de Hidrogênio , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-17/metabolismo , Nitratos , Nitritos , Oxidantes/metabolismo , Oxirredução , Estresse Oxidativo , RNA Mensageiro/metabolismo , Ácido Úrico , Molécula 1 de Adesão de Célula Vascular/metabolismo
19.
BMC Res Notes ; 15(1): 275, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953874

RESUMO

OBJECTIVE: Chronic multisymptom illness (CMI) is an idiopathic disease affecting thousands of U.S. Veterans exposed to open-air burn pits emitting aerosolized particulate matter (PM) while serving in Central and Southwest Asia and Africa. Exposure to burn pit PM can result in profound biologic consequences including chronic fatigue, impaired cognition, and respiratory diseases. Dysregulated or unresolved inflammation is a possible underlying mechanism for CMI onset. We describe a rat model of whole-body inhalation exposure using carbon black nanoparticles (CB) as a surrogate for military burn pit-related exposure. Using this model, we measured biomarkers of inflammation in multiple tissues. RESULTS: Male Sprague Dawley rats were exposed to CB aerosols by whole body inhalation (6 ± 0.83 mg/m3). Proinflammatory biomarkers were measured in multiple tissues including arteries, brain, lung, and plasma. Biomarkers of cardiovascular injury were also assayed in plasma. CB inhalation exposure increased CMI-related proinflammatory biomarkers such as IFN-γ and TNFα in multiple tissue samples. CB exposure also induced cardiovascular injury markers (adiponectin, MCP1, sE-Selectin, sICam-1 and TIMP1) in plasma. These findings support the validity of our animal exposure model for studies of burn pit-induced CMI. Future studies will model more complex toxicant mixtures as documented at multiple burn pit sites.


Assuntos
Incineração , Fuligem , Animais , Biomarcadores , Carbono , Doença Crônica , Inflamação , Exposição por Inalação/efeitos adversos , Pulmão , Masculino , Ratos , Ratos Sprague-Dawley , Fuligem/toxicidade
20.
Arch Toxicol ; 85(7): 733-41, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20502881

RESUMO

Increasing evidence linking nanoparticles (NPs) with different cellular outcomes necessitate an urgent need for the better understanding of cellular signalling pathways triggered by NPs. Oxidative stress has largely been reported to be implicated in NP-induced toxicity. It could activate a wide variety of cellular events such as cell cycle arrest, apoptosis, inflammation and induction of antioxidant enzymes. These responses occur after the activation of different cellular pathways. In this context, three groups of MAP kinase cascades [ERK (extracellular signal-regulated kinases), p38 mitogen-activated protein kinase and JNK (c-Jun N-terminal kinases)] as well as redox-sensitive transcription factors such as NFκB and Nrf-2 were specially investigated. The ability of NPs to interact with these signalling pathways could partially explain their cytotoxicity. The induction of apoptosis is also closely related to the modulation of signalling pathways induced by NPs. Newly emerged scientific areas of research are the studies on interactions between NPs and biological molecules in body fluids, cellular microenvironment, intracellular components or secreted cellular proteins such as cytokines, growth factors and enzymes and use of engineered NPs to target various signal transduction pathways in cancer therapy. Recently published data present the ability of NPs to interact with membrane receptors leading to a possible aggregation of these receptors. These interactions could lead to a sustained modulation of specific signalling in the target cells or paracrine and even "by-stander" effects of the neighbouring cells or tissues. However, oxidative stress is not sufficient to explain specific mechanisms which could be induced by NPs, and these new findings emphasize the need to revise the paradigm of oxidative stress to explain the effects of NPs.


Assuntos
Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Nanopartículas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA