Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 67(14): 4325-38, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27259555

RESUMO

Subtilisin-like proteases (SBTs) constitute a large family of extracellular plant proteases, the function of which is still largely unknown. In tomato plants, the expression of SBT3 was found to be induced in response to wounding and insect attack in injured leaves but not in healthy systemic tissues. The time course of SBT3 induction resembled that of proteinase inhibitor II and other late wound response genes suggesting a role for SBT3 in herbivore defense. Consistent with such a role, larvae of the specialist herbivore Manduca sexta performed better on transgenic plants silenced for SBT3 expression (SBT3-SI). Supporting a contribution of SBT3 to systemic wound signaling, systemic induction of late wound response genes was attenuated in SBT3-SI plants. The partial loss of insect resistance may thus be explained by a reduction in systemic defense gene expression. Alternatively, SBT3 may play a post-ingestive role in plant defense. Similar to other anti-nutritive proteins, SBT3 was found to be stable and active in the insect's digestive system, where it may act on unidentified proteins of insect or plant origin. Finally, a reduction in the level of pectin methylesterification that was observed in transgenic plants with altered levels of SBT3 expression suggested an involvement of SBT3 in the regulation of pectin methylesterases (PMEs). While such a role has been described in other systems, PME activity and the degree of pectin methylesterification did not correlate with the level of insect resistance in SBT3-SI and SBT3 overexpressing plants and are thus unrelated to the observed resistance phenotype.


Assuntos
Proteínas de Plantas/fisiologia , Solanum lycopersicum/fisiologia , Subtilisinas/fisiologia , Animais , Herbivoria , Solanum lycopersicum/enzimologia , Manduca , Peptídeo Hidrolases/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Proc Natl Acad Sci U S A ; 106(40): 17223-8, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19805099

RESUMO

Subtilases are serine proteases found in Archae, Bacteria, yeasts, and higher eukaryotes. Plants possess many more of these subtilisin-like endopeptidases than animals, e.g., 56 identified genes in Arabidopsis compared with only 9 in humans, indicating important roles for subtilases in plant biology. We report the first structure of a plant subtilase, SBT3 from tomato, in the active apo form and complexed with a chloromethylketone (cmk) inhibitor. The domain architecture comprises an N-terminal protease domain displaying a 132 aa protease-associated (PA) domain insertion and a C-terminal seven-stranded jelly-roll fibronectin (Fn) III-like domain. We present the first structural evidence for an explicit function of PA domains in proteases revealing a vital role in the homo-dimerization of SBT3 and in enzyme activation. Although Ca(2+)-binding sites are conserved and critical for stability in other subtilases, SBT3 was found to be Ca(2+)-free and its thermo stability is Ca(2+)-independent.


Assuntos
Cálcio/metabolismo , Estrutura Terciária de Proteína , Solanum lycopersicum/enzimologia , Subtilisinas/química , Domínio Catalítico/genética , Cristalização , Ativação Enzimática , Estabilidade Enzimática , Solanum lycopersicum/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Subtilisinas/genética , Subtilisinas/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-19407393

RESUMO

The subtilase SBT3 from Solanum lycopersicum (tomato) was purified from a tomato cell culture and crystallized using the sitting-drop vapour-diffusion method. A native data set was collected to 2.5 A resolution at 100 K using synchrotron radiation. For experimental phasing, CsCl-derivative and tetrakis(acetoxymercuri)methane (TAMM) derivative crystals were employed for MIRAS phasing. Three caesium sites and one TAMM site were identified, which allowed solution of the structure.


Assuntos
Solanum lycopersicum/enzimologia , Subtilisinas/análise , Subtilisinas/química , Cristalização , Cristalografia por Raios X , Solanum lycopersicum/genética , Subtilisinas/isolamento & purificação , Subtilisinas/metabolismo
4.
J Biol Chem ; 284(21): 14068-78, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19332543

RESUMO

A transgenic plant cell suspension culture was established as a versatile and efficient expression system for the subtilase SlSBT3 from tomato. The recombinant protease was purified to homogeneity from culture supernatants by fractionated ammonium sulfate precipitation, batch adsorption to cation exchange material, and anion exchange chromatography. Purified SlSBT3 was identified as a 79-kDa glycoprotein with both complex and paucimannosidic type glycan chains at Asn(177), Asn(203), Asn(376), Asn(697), and Asn(745). SlSBT3 was found to be a very stable enzyme, being fully active at 60 degrees C and showing highest activity at alkaline conditions with a maximum between pH 7.5 and 8.0. Substrate specificity of SlSBT3 was analyzed in detail, revealing a preference for Gln and Lys in the P(1) and P(2) positions of oligopeptide substrates, respectively. Similar to bacterial, yeast, and mammalian subtilases, SlSBT3 is synthesized as a preproenzyme, and processing of the prodomain in the endoplasmic reticulum is a prerequisite for passage through the secretory pathway. SlSBT3 S538A and S538C active site mutants accumulated intracellularly as unprocessed zymogens, indicating that prodomain cleavage occurs autocatalytically. The wild-type SlSBT3 protein failed to cleave the prodomain of the S538A mutant in trans, demonstrating that zymogen maturation is an intramolecular process. Distinguishing features of plant as compared with mammalian subtilases include the insertion of a large protease-associated domain between the His and Ser residues of the catalytic triad and the C-terminal extension to the catalytic domain. Both features were found to be required for SlSBT3 activity and, consequently, for prodomain processing and secretion.


Assuntos
Precursores Enzimáticos/metabolismo , Peptídeo Hidrolases/química , Processamento de Proteína Pós-Traducional , Via Secretória , Solanum lycopersicum/enzimologia , Subtilisinas/química , Subtilisinas/metabolismo , Sequência de Aminoácidos , Biocatálise , Glicosilação , Cinética , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Relação Estrutura-Atividade , Especificidade por Substrato , Subtilisinas/isolamento & purificação , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA