Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(6): e2219118120, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719924

RESUMO

Individual paintings by artists including Vincent van Gogh and Edvard Munch have been shown to depict specific atmospheric phenomena, raising the question of whether longer-term environmental change influences stylistic trends in painting. Anthropogenic aerosol emissions increased to unprecedented levels during the 19th century as a consequence of the Industrial Revolution, particularly in Western European cities, leading to an optical environment having less contrast and more intensity. Here, we show that trends from more figurative to impressionistic representations in J.M.W. Turner and Claude Monet's paintings in London and Paris over the 19th century accurately render physical changes in their local optical environment. In particular, we demonstrate that changes in local sulfur dioxide emissions are a highly statistically significant explanatory variable for trends in the contrast and intensity of Turner, Monet, and others' works, including after controlling for time trends and subject matter. Industrialization altered the environmental context in which Turner and Monet painted, and our results indicate that their paintings capture changes in the optical environment associated with increasingly polluted atmospheres during the Industrial Revolution.

2.
Nature ; 571(7765): 393-397, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31316195

RESUMO

Existing estimates of sea surface temperatures (SSTs) indicate that, during the early twentieth century, the North Atlantic and northeast Pacific oceans warmed by twice the global average, whereas the northwest Pacific Ocean cooled by an amount equal to the global average1-4. Such a heterogeneous pattern suggests first-order contributions from regional variations in forcing or in ocean-atmosphere heat fluxes5,6. These older SST estimates are, however, derived from measurements of water temperatures in ship-board buckets, and must be corrected for substantial biases7-9. Here we show that correcting for offsets among groups of bucket measurements leads to SST variations that correlate better with nearby land temperatures and are more homogeneous in their pattern of warming. Offsets are identified by systematically comparing nearby SST observations among different groups10. Correcting for offsets in German measurements decreases warming rates in the North Atlantic, whereas correcting for Japanese measurement offsets leads to increased and more uniform warming in the North Pacific. Japanese measurement offsets in the 1930s primarily result from records having been truncated to whole degrees Celsius when the records were digitized in the 1960s. These findings underscore the fact that historical SST records reflect both physical and social dimensions in data collection, and suggest that further opportunities exist for improving the accuracy of historical SST records9,11.


Assuntos
Conjuntos de Dados como Assunto/normas , Aquecimento Global/estatística & dados numéricos , Água do Mar/análise , Temperatura , Ar/análise , Oceano Atlântico , Conjuntos de Dados como Assunto/história , Mapeamento Geográfico , Alemanha , Aquecimento Global/história , História do Século XX , Japão , Oceano Pacífico , Reprodutibilidade dos Testes
4.
Proc Natl Acad Sci U S A ; 119(28): e2204761119, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867751

RESUMO

It is established that changes in sea level influence melt production at midocean ridges, but whether changes in melt production influence the pattern of bathymetry flanking midocean ridges has been debated on both theoretical and empirical grounds. To explore the dynamics that may give rise to a sea-level influence on bathymetry, we simulate abyssal hills using a faulting model with periodic variations in melt supply. For 100-ky melt-supply cycles, model results show that faults initiate during periods of amagmatic spreading at half-rates >2.3 cm/y and for 41-ky melt-supply cycles at half-rates >3.8 cm/y. Analysis of bathymetry across 17 midocean ridge regions shows characteristic wavelengths that closely align with the predictions from the faulting model. At intermediate-spreading ridges (half-rates >2.3 cm/y and [Formula: see text]3.8 cm/y) abyssal hill spacing increases with spreading rate at 0.99 km/(cm/y) or 99 ky (n [Formula: see text] 12; 95% CI, 87 to 110 ky), and at fast-spreading ridges (half-rates >3.8 cm/y) spacing increases at 38 ky (n [Formula: see text] 5; 95% CI, 29 to 47 ky). Including previously published analyses of abyssal-hill spacing gives a more precise alignment with the primary periods of Pleistocene sea-level variability. Furthermore, analysis of bathymetry from fast-spreading ridges shows a highly statistically significant spectral peak (P < 0.01) at the 1/(41-ky) period of Earth's variations in axial tilt. Faulting models and observations both support a linkage between glacially induced sea-level change and the fabric of the sea floor over the late Pleistocene.

5.
Nature ; 564(7736): 400-404, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30568196

RESUMO

Identifying the causes of historical trends in relative sea level-the height of the sea surface relative to Earth's crust-is a prerequisite for predicting future changes. Rates of change along the eastern coast of the USA (the US East Coast) during the past century were spatially variable, and relative sea level rose faster along the Mid-Atlantic Bight than along the South Atlantic Bight and the Gulf of Maine. Past studies suggest that Earth's ongoing response to the last deglaciation1-5, surface redistribution of ice and water5-9 and changes in ocean circulation9-13 contributed considerably to this large-scale spatial pattern. Here we analyse instrumental data14,15 and proxy reconstructions4,12 using probabilistic methods16-18 to show that vertical motions of Earth's crust exerted the dominant control on regional spatial differences in relative sea-level trends along the US East Coast during 1900-2017, explaining most of the large-scale spatial variance. Rates of coastal subsidence caused by ongoing relaxation of the peripheral forebulge associated with the last deglaciation are strongest near North Carolina, Maryland and Virginia. Such structure indicates that Earth's elastic lithosphere is thicker than has been assumed in other models19-22. We also find a substantial coastal gradient in relative sea-level trends over this period that is unrelated to deglaciation and suggests contributions from twentieth-century redistribution of ice and water. Our results indicate that the majority of large-scale spatial variation in long-term rates of relative sea-level rise on the US East Coast is due to geological processes that will persist at similar rates for centuries.

6.
Proc Natl Acad Sci U S A ; 118(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33323525

RESUMO

With nearly every country combating the 2019 novel coronavirus (COVID-19), there is a need to understand how local environmental conditions may modify transmission. To date, quantifying seasonality of the disease has been limited by scarce data and the difficulty of isolating climatological variables from other drivers of transmission in observational studies. We combine a spatially resolved dataset of confirmed COVID-19 cases, composed of 3,235 regions across 173 countries, with local environmental conditions and a statistical approach developed to quantify causal effects of environmental conditions in observational data settings. We find that ultraviolet (UV) radiation has a statistically significant effect on daily COVID-19 growth rates: a SD increase in UV lowers the daily growth rate of COVID-19 cases by ∼1 percentage point over the subsequent 2.5 wk, relative to an average in-sample growth rate of 13.2%. The time pattern of lagged effects peaks 9 to 11 d after UV exposure, consistent with the combined timescale of incubation, testing, and reporting. Cumulative effects of temperature and humidity are not statistically significant. Simulations illustrate how seasonal changes in UV have influenced regional patterns of COVID-19 growth rates from January to June, indicating that UV has a substantially smaller effect on the spread of the disease than social distancing policies. Furthermore, total COVID-19 seasonality has indeterminate sign for most regions during this period due to uncertain effects of other environmental variables. Our findings indicate UV exposure influences COVID-19 cases, but a comprehensive understanding of seasonality awaits further analysis.


Assuntos
COVID-19/epidemiologia , Pandemias , SARS-CoV-2/efeitos da radiação , Raios Ultravioleta , COVID-19/virologia , Humanos , Umidade , Estações do Ano , Temperatura
8.
Proc Natl Acad Sci U S A ; 115(47): 11935-11940, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30397143

RESUMO

Continuation of historical trends in crop yield are critical to meeting the demands of a growing and more affluent world population. Climate change may compromise our ability to meet these demands, but estimates vary widely, highlighting the importance of understanding historical interactions between yield and climate trends. The relationship between temperature and yield is nuanced, involving differential yield outcomes to warm ([Formula: see text]C) and hot ([Formula: see text]C) temperatures and differing sensitivity across growth phases. Here, we use a crop model that resolves temperature responses according to magnitude and growth phase to show that US maize has benefited from weather shifts since 1981. Improvements are related to lengthening of the growing season and cooling of the hottest temperatures. Furthermore, current farmer cropping schedules are more beneficial in the climate of the last decade than they would have been in earlier decades, indicating statistically significant adaptation to a changing climate of 13 kg·ha-1· decade-1 All together, the better weather experienced by US maize accounts for 28% of the yield trends since 1981. Sustaining positive trends in yield depends on whether improvements in agricultural climate continue and the degree to which farmers adapt to future climates.


Assuntos
Agricultura/tendências , Zea mays/crescimento & desenvolvimento , Agricultura/métodos , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Fazendeiros , Temperatura Alta , Estações do Ano , Temperatura , Estados Unidos , Tempo (Meteorologia)
9.
Nature ; 510(7503): 139-42, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24805231

RESUMO

Dietary deficiencies of zinc and iron are a substantial global public health problem. An estimated two billion people suffer these deficiencies, causing a loss of 63 million life-years annually. Most of these people depend on C3 grains and legumes as their primary dietary source of zinc and iron. Here we report that C3 grains and legumes have lower concentrations of zinc and iron when grown under field conditions at the elevated atmospheric CO2 concentration predicted for the middle of this century. C3 crops other than legumes also have lower concentrations of protein, whereas C4 crops seem to be less affected. Differences between cultivars of a single crop suggest that breeding for decreased sensitivity to atmospheric CO2 concentration could partly address these new challenges to global health.


Assuntos
Dióxido de Carbono/farmacologia , Produtos Agrícolas/química , Produtos Agrícolas/efeitos dos fármacos , Estado Nutricional , Valor Nutritivo/efeitos dos fármacos , Saúde Pública/tendências , Ar/análise , Atmosfera/química , Austrália , Cruzamento , Dióxido de Carbono/análise , Produtos Agrícolas/metabolismo , Dieta , Grão Comestível/química , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Fabaceae/química , Fabaceae/efeitos dos fármacos , Fabaceae/metabolismo , Saúde Global/tendências , Humanos , Ferro/análise , Ferro/metabolismo , Deficiências de Ferro , Japão , Fotossíntese/efeitos dos fármacos , Ácido Fítico/análise , Ácido Fítico/metabolismo , Estados Unidos , Zinco/análise , Zinco/deficiência , Zinco/metabolismo
10.
Nature ; 496(7444): 201-5, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23579678

RESUMO

Recently observed extreme temperatures at high northern latitudes are rare by definition, making the longer time span afforded by climate proxies important for assessing how the frequency of such extremes may be changing. Previous reconstructions of past temperature variability have demonstrated that recent warmth is anomalous relative to preceding centuries or millennia, but extreme events can be more thoroughly evaluated using a spatially resolved approach that provides an ensemble of possible temperature histories. Here, using a hierarchical Bayesian analysis of instrumental, tree-ring, ice-core and lake-sediment records, we show that the magnitude and frequency of recent warm temperature extremes at high northern latitudes are unprecedented in the past 600 years. The summers of 2005, 2007, 2010 and 2011 were warmer than those of all prior years back to 1400 (probability P > 0.95), in terms of the spatial average. The summer of 2010 was the warmest in the previous 600 years in western Russia (P > 0.99) and probably the warmest in western Greenland and the Canadian Arctic as well (P > 0.90). These and other recent extremes greatly exceed those expected from a stationary climate, but can be understood as resulting from constant space-time variability about an increased mean temperature.


Assuntos
Calor Extremo , Geografia , Aquecimento Global/história , Aquecimento Global/estatística & dados numéricos , Análise de Variância , Regiões Árticas , Teorema de Bayes , Canadá , Frio Extremo , Mapeamento Geográfico , Groenlândia , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Federação Russa , Estações do Ano , Fatores de Tempo
11.
Annu Rev Public Health ; 38: 259-277, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28125383

RESUMO

Great progress has been made in addressing global undernutrition over the past several decades, in part because of large increases in food production from agricultural expansion and intensification. Food systems, however, face continued increases in demand and growing environmental pressures. Most prominently, human-caused climate change will influence the quality and quantity of food we produce and our ability to distribute it equitably. Our capacity to ensure food security and nutritional adequacy in the face of rapidly changing biophysical conditions will be a major determinant of the next century's global burden of disease. In this article, we review the main pathways by which climate change may affect our food production systems-agriculture, fisheries, and livestock-as well as the socioeconomic forces that may influence equitable distribution.


Assuntos
Mudança Climática , Abastecimento de Alimentos , Agricultura , Alimentos , Humanos , Desnutrição
12.
Nature ; 480(7376): 229-32, 2011 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-22158246

RESUMO

Milankovitch proposed that Earth resides in an interglacial state when its spin axis both tilts to a high obliquity and precesses to align the Northern Hemisphere summer with Earth's nearest approach to the Sun. This general concept has been elaborated into hypotheses that precession, obliquity or combinations of both could pace deglaciations during the late Pleistocene. Earlier tests have shown that obliquity paces the late Pleistocene glacial cycles but have been inconclusive with regard to precession, whose shorter period of about 20,000 years makes phasing more sensitive to timing errors. No quantitative test has provided firm evidence for a dual effect. Here I show that both obliquity and precession pace late Pleistocene glacial cycles. Deficiencies in time control that have long stymied efforts to establish orbital effects on deglaciation are overcome using a new statistical test that focuses on maxima in orbital forcing. The results are fully consistent with Milankovitch's proposal but also admit the possibility that long Southern Hemisphere summers contribute to deglaciation.

13.
Proc Natl Acad Sci U S A ; 111(47): 16682-7, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385623

RESUMO

The variability of sea surface temperatures (SSTs) at multidecadal and longer timescales is poorly constrained, primarily because instrumental records are short and proxy records are noisy. Through applying a new noise filtering technique to a global network of late Holocene SST proxies, we estimate SST variability between annual and millennial timescales. Filtered estimates of SST variability obtained from coral, foraminifer, and alkenone records are shown to be consistent with one another and with instrumental records in the frequency bands at which they overlap. General circulation models, however, simulate SST variability that is systematically smaller than instrumental and proxy-based estimates. Discrepancies in variability are largest at low latitudes and increase with timescale, reaching two orders of magnitude for tropical variability at millennial timescales. This result implies major deficiencies in observational estimates or model simulations, or both, and has implications for the attribution of past variations and prediction of future change.

15.
Nature ; 441(7091): 329-32, 2006 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-16710417

RESUMO

Climate variability exists at all timescales-and climatic processes are intimately coupled, so that understanding variability at any one timescale requires some understanding of the whole. Records of the Earth's surface temperature illustrate this interdependence, having a continuum of variability following a power-law scaling. But although specific modes of interannual variability are relatively well understood, the general controls on continuum variability are uncertain and usually described as purely stochastic processes. Here we show that power-law relationships of surface temperature variability scale with annual and Milankovitch-period (23,000- and 41,000-year) cycles. The annual cycle corresponds to scaling at monthly to decadal periods, while millennial and longer periods are tied to the Milankovitch cycles. Thus the annual, Milankovitch and continuum temperature variability together represent the response to deterministic insolation forcing. The identification of a deterministic control on the continuum provides insight into the mechanisms governing interannual and longer-period climate variability.

16.
Nat Food ; 3(9): 753-763, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-37118152

RESUMO

Warming temperatures tend to damage crop yields, yet the influence of water supply on global yields and its relation to temperature stress remains unclear. Here we use satellite-based measurements to provide empirical estimates of how root zone soil moisture and surface air temperature jointly influence the global productivity of maize, soybeans, millet and sorghum. Relative to empirical models using precipitation as a proxy for water supply, we find that models using soil moisture explain 30-120% more of the interannual yield variation across crops. Models using soil moisture also better separate water-supply stress from correlated heat stress and show that soil moisture and temperature contribute roughly equally to historical variations in yield. Globally, our models project yield damages of -9% to -32% across crops by end-of-century under Shared Socioeconomic Pathway 5-8.5 from changes in temperature and soil moisture. By contrast, projections using temperature and precipitation overestimate damages by 28% to 320% across crops both because they confound stresses from dryness and heat and because changes in soil moisture and temperature diverge from their historical association due to climate change. Our results demonstrate the importance of accurately representing water supply for predicting changes in global agricultural productivity and for designing effective adaptation strategies.

17.
Am J Clin Nutr ; 115(1): 18-33, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34523669

RESUMO

Food systems are at the center of a brewing storm consisting of a rapidly changing climate, rising hunger and malnutrition, and significant social inequities. At the same time, there are vast opportunities to ensure that food systems produce healthy and safe food in equitable ways that promote environmental sustainability, especially if the world can come together at the UN Food Systems Summit in late 2021 and make strong and binding commitments toward food system transformation. The NIH-funded Nutrition Obesity Research Center at Harvard and the Harvard Medical School Division of Nutrition held their 22nd annual Harvard Nutrition Obesity Symposium entitled "Global Food Systems and Sustainable Nutrition in the 21st Century" in June 2021. This article presents a synthesis of this symposium and highlights the importance of food systems to addressing the burden of malnutrition and noncommunicable diseases, climate change, and the related economic and social inequities. Transformation of food systems is possible, and the nutrition and health communities have a significant role to play in this transformative process.


Assuntos
Dieta Saudável/tendências , Abastecimento de Alimentos , Saúde Global/tendências , Desenvolvimento Sustentável/tendências , Congressos como Assunto , História do Século XXI , Humanos , Desnutrição/prevenção & controle , Obesidade/prevenção & controle
18.
Nature ; 434(7032): 491-4, 2005 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15791252

RESUMO

The 100,000-year timescale in the glacial/interglacial cycles of the late Pleistocene epoch (the past approximately 700,000 years) is commonly attributed to control by variations in the Earth's orbit. This hypothesis has inspired models that depend on the Earth's obliquity (approximately 40,000 yr; approximately 40 kyr), orbital eccentricity (approximately 100 kyr) and precessional (approximately 20 kyr) fluctuations, with the emphasis usually on eccentricity and precessional forcing. According to a contrasting hypothesis, the glacial cycles arise primarily because of random internal climate variability. Taking these two perspectives together, there are currently more than thirty different models of the seven late-Pleistocene glacial cycles. Here we present a statistical test of the orbital forcing hypothesis, focusing on the rapid deglaciation events known as terminations. According to our analysis, the null hypothesis that glacial terminations are independent of obliquity can be rejected at the 5% significance level, whereas the corresponding null hypotheses for eccentricity and precession cannot be rejected. The simplest inference consistent with the test results is that the ice sheets terminated every second or third obliquity cycle at times of high obliquity, similar to the original proposal by Milankovitch. We also present simple stochastic and deterministic models that describe the timing of the late-Pleistocene glacial terminations purely in terms of obliquity forcing.

20.
Sci Adv ; 7(26)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34172449

RESUMO

Confidence in dynamical and statistical hurricane prediction is rooted in the skillful reproduction of hurricane frequency using sea surface temperature (SST) patterns, but an ensemble of high-resolution atmospheric simulation extending to the 1880s indicates model-data disagreements that exceed those expected from documented uncertainties. We apply recently developed corrections for biases in historical SSTs that lead to revisions in tropical to subtropical SST gradients by ±0.1°C. Revised atmospheric simulations have 20% adjustments in the decadal variations of hurricane frequency and become more consistent with observations. The improved simulation skill from revised SST estimates not only supports the utility of high-resolution atmospheric models for hurricane projections but also highlights the need for accurate estimates of past and future patterns of SST changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA