Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(9): e2219394120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802437

RESUMO

Vocal fatigue is a measurable form of performance fatigue resulting from overuse of the voice and is characterized by negative vocal adaptation. Vocal dose refers to cumulative exposure of the vocal fold tissue to vibration. Professionals with high vocal demands, such as singers and teachers, are especially prone to vocal fatigue. Failure to adjust habits can lead to compensatory lapses in vocal technique and an increased risk of vocal fold injury. Quantifying and recording vocal dose to inform individuals about potential overuse is an important step toward mitigating vocal fatigue. Previous work establishes vocal dosimetry methods, that is, processes to quantify vocal fold vibration dose but with bulky, wired devices that are not amenable to continuous use during natural daily activities; these previously reported systems also provide limited mechanisms for real-time user feedback. This study introduces a soft, wireless, skin-conformal technology that gently mounts on the upper chest to capture vibratory responses associated with vocalization in a manner that is immune to ambient noises. Pairing with a separate, wirelessly linked device supports haptic feedback to the user based on quantitative thresholds in vocal usage. A machine learning-based approach enables precise vocal dosimetry from the recorded data, to support personalized, real-time quantitation and feedback. These systems have strong potential to guide healthy behaviors in vocal use.


Assuntos
Canto , Distúrbios da Voz , Voz , Humanos , Retroalimentação , Distúrbios da Voz/etiologia , Voz/fisiologia , Prega Vocal/fisiologia
2.
Sci Adv ; 8(51): eade3201, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563148

RESUMO

Recently reported winged microelectronic systems offer passive flight mechanisms as a dispersal strategy for purposes in environmental monitoring, population surveillance, pathogen tracking, and other applications. Initial studies indicate potential for technologies of this type, but advances in structural and responsive materials and in aerodynamically optimized geometries are necessary to improve the functionality and expand the modes of operation. Here, we introduce environmentally degradable materials as the basis of 3D fliers that allow remote, colorimetric assessments of multiple environmental parameters-pH, heavy metal concentrations, and ultraviolet exposure, along with humidity levels and temperature. Experimental and theoretical investigations of the aerodynamics of these systems reveal design considerations that include not only the geometries of the structures but also their mass distributions across a range of bioinspired designs. Preliminary field studies that rely on drones for deployment and for remote colorimetric analysis by machine learning interpretation of digital images illustrate scenarios for practical use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA