Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(9): 3671-3679, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36812385

RESUMO

Human norovirus (HuNoV) is an important cause of acute gastroenteritis and can be transmitted by water exposures, but its persistence in water is not well understood. Loss of HuNoV infectivity in surface water was compared with persistence of intact HuNoV capsids and genome segments. Surface water from a freshwater creek was filter-sterilized, inoculated with HuNoV (GII.4) purified from stool, and incubated at 15 or 20 °C. We measured HuNoV infectivity via the human intestinal enteroid system and HuNoV persistence via reverse transcription-quantitative polymerase chain reaction assays without (genome segment persistence) or with (intact viral capsid persistence) enzymatic pretreatment to digest naked RNA. For infectious HuNoV, results ranged from no significant decay to a decay rate constant ("k") of 2.2 day-1. In one creek water sample, genome damage was likely a dominant inactivation mechanism. In other samples from the same creek, loss of HuNoV infectivity could not be attributed to genome damage or capsid cleavage. The range in k and the difference in the inactivation mechanism observed in water from the same site could not be explained, but variable constituents in the environmental matrix could have contributed. Thus, a single k may be insufficient for modeling virus inactivation in surface waters.


Assuntos
Norovirus , Água , Humanos , Norovirus/genética , Inativação de Vírus , Água Doce
2.
Sci Rep ; 14(1): 2716, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302590

RESUMO

Antimicrobial resistance (AR) is one of the greatest threats to global health and is associated with higher treatment costs, longer hospital stays, and increased mortality. Current gold standard antimicrobial susceptibility tests (AST) rely on organism growth rates that result in prolonged time-to-answer for slow growing organisms. Changes in the cellular transcriptome can be rapid in the presence of stressors such as antibiotic pressure, providing the opportunity to develop AST towards transcriptomic signatures. Here, we show that relative quantification of the recA gene is an indicator of pathogen susceptibly when select species are challenged with relevant concentrations of ciprofloxacin. We demonstrate that ciprofloxacin susceptible strains of Y. pestis and B. anthracis have significant increases in relative recA gene expression after 15 min of exposure while resistant strains show no significant differences. Building upon this data, we designed and optimized seven duplex RT-qPCR assays targeting the recA and 16S rRNA gene, response and housekeeping genes, respectively, for multiple biothreat and ESKAPE pathogens. Final evaluation of all seven duplex assays tested against 124 ciprofloxacin susceptible and resistant strains, including Tier 1 pathogens, demonstrated an overall categorical agreement compared to microbroth dilution of 97% using a defined cutoff. Testing pathogen strains commonly associated with urinary tract infections in contrived mock sample sets demonstrated an overall categorical agreement of 96%. These data indicate relative quantification of a single highly conserved gene accurately determines susceptibility for multiple bacterial species in response to ciprofloxacin.


Assuntos
Bacillus anthracis , Infecções Urinárias , Yersinia pestis , Humanos , Ciprofloxacina/farmacologia , RNA Ribossômico 16S , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Urinárias/tratamento farmacológico , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA