Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8013): 937-944, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720067

RESUMO

QS-21 is a potent vaccine adjuvant and remains the only saponin-based adjuvant that has been clinically approved for use in humans1,2. However, owing to the complex structure of QS-21, its availability is limited. Today, the supply depends on laborious extraction from the Chilean soapbark tree or on low-yielding total chemical synthesis3,4. Here we demonstrate the complete biosynthesis of QS-21 and its precursors, as well as structural derivatives, in engineered yeast strains. The successful biosynthesis in yeast requires fine-tuning of the host's native pathway fluxes, as well as the functional and balanced expression of 38 heterologous enzymes. The required biosynthetic pathway spans seven enzyme families-a terpene synthase, P450s, nucleotide sugar synthases, glycosyltransferases, a coenzyme A ligase, acyl transferases and polyketide synthases-from six organisms, and mimics in yeast the subcellular compartmentalization of plants from the endoplasmic reticulum membrane to the cytosol. Finally, by taking advantage of the promiscuity of certain pathway enzymes, we produced structural analogues of QS-21 using this biosynthetic platform. This microbial production scheme will allow for the future establishment of a structure-activity relationship, and will thus enable the rational design of potent vaccine adjuvants.


Assuntos
Adjuvantes Imunológicos , Engenharia Metabólica , Saccharomyces cerevisiae , Saponinas , Adjuvantes Imunológicos/biossíntese , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/genética , Adjuvantes Imunológicos/metabolismo , Vias Biossintéticas/genética , Desenho de Fármacos , Enzimas/genética , Enzimas/metabolismo , Engenharia Metabólica/métodos , Plantas/enzimologia , Plantas/genética , Plantas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saponinas/biossíntese , Saponinas/química , Saponinas/genética , Saponinas/metabolismo , Relação Estrutura-Atividade
2.
Cell ; 158(6): 1389-1401, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25215494

RESUMO

Cyclic di-adenosine monophosphate (c-di-AMP) is a broadly conserved second messenger required for bacterial growth and infection. However, the molecular mechanisms of c-di-AMP signaling are still poorly understood. Using a chemical proteomics screen for c-di-AMP-interacting proteins in the pathogen Listeria monocytogenes, we identified several broadly conserved protein receptors, including the central metabolic enzyme pyruvate carboxylase (LmPC). Biochemical and crystallographic studies of the LmPC-c-di-AMP interaction revealed a previously unrecognized allosteric regulatory site 25 Å from the active site. Mutations in this site disrupted c-di-AMP binding and affected catalytic activity of LmPC as well as PC from pathogenic Enterococcus faecalis. C-di-AMP depletion resulted in altered metabolic activity in L. monocytogenes. Correction of this metabolic imbalance rescued bacterial growth, reduced bacterial lysis, and resulted in enhanced bacterial burdens during infection. These findings greatly expand the c-di-AMP signaling repertoire and reveal a central metabolic regulatory role for a cyclic dinucleotide.


Assuntos
Fosfatos de Dinucleosídeos/metabolismo , Listeria monocytogenes/metabolismo , Piruvato Carboxilase/química , Piruvato Carboxilase/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Animais , Bacteriólise , Sítios de Ligação , Cristalografia por Raios X , Interações Hospedeiro-Patógeno , Listeria monocytogenes/enzimologia , Listeria monocytogenes/crescimento & desenvolvimento , Listeriose/microbiologia , Camundongos , Modelos Moleculares , Dados de Sequência Molecular
3.
Nature ; 606(7912): 160-164, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35585231

RESUMO

Cellular iron homeostasis is vital and maintained through tight regulation of iron import, efflux, storage and detoxification1-3. The most common modes of iron storage use proteinaceous compartments, such as ferritins and related proteins4,5. Although lipid-bounded iron compartments have also been described, the basis for their formation and function remains unknown6,7. Here we focus on one such compartment, herein named the 'ferrosome', that was previously observed in the anaerobic bacterium Desulfovibrio magneticus6. Using a proteomic approach, we identify three ferrosome-associated (Fez) proteins that are responsible for forming ferrosomes in D. magneticus. Fez proteins are encoded in a putative operon and include FezB, a P1B-6-ATPase found in phylogenetically and metabolically diverse species of bacteria and archaea. We show that two other bacterial species, Rhodopseudomonas palustris and Shewanella putrefaciens, make ferrosomes through the action of their six-gene fez operon. Additionally, we find that fez operons are sufficient for ferrosome formation in foreign hosts. Using S. putrefaciens as a model, we show that ferrosomes probably have a role in the anaerobic adaptation to iron starvation. Overall, this work establishes ferrosomes as a new class of iron storage organelles and sets the stage for studying their formation and structure in diverse microorganisms.


Assuntos
Compostos Férricos , Bactérias Gram-Negativas , Família Multigênica , Organelas , Proteínas de Bactérias/genética , Desulfovibrio , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/genética , Organelas/genética , Organelas/metabolismo , Filogenia , Proteômica , Rodopseudomonas , Shewanella putrefaciens
4.
Mol Cell ; 73(4): 727-737.e3, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30709710

RESUMO

CRISPR-Cas immunity requires integration of short, foreign DNA fragments into the host genome at the CRISPR locus, a site consisting of alternating repeat sequences and foreign-derived spacers. In most CRISPR systems, the proteins Cas1 and Cas2 form the integration complex and are both essential for DNA acquisition. Most type V-C and V-D systems lack the cas2 gene and have unusually short CRISPR repeats and spacers. Here, we show that a mini-integrase comprising the type V-C Cas1 protein alone catalyzes DNA integration with a preference for short (17- to 19-base-pair) DNA fragments. The mini-integrase has weak specificity for the CRISPR array. We present evidence that the Cas1 proteins form a tetramer for integration. Our findings support a model of a minimal integrase with an internal ruler mechanism that favors shorter repeats and spacers. This minimal integrase may represent the function of the ancestral Cas1 prior to Cas2 adoption.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Bacteriano/genética , Endodesoxirribonucleases/genética , Endonucleases/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Edição de Genes/métodos , Integrases/genética , Pareamento de Bases , Proteínas Associadas a CRISPR/metabolismo , DNA Bacteriano/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Integrases/metabolismo , Motivos de Nucleotídeos , Especificidade por Substrato
5.
Proc Natl Acad Sci U S A ; 120(10): e2211630120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36867685

RESUMO

The enzyme soybean lipoxygenase (SLO) provides a prototype for deep tunneling mechanisms in hydrogen transfer catalysis. This work combines room temperature X-ray studies with extended hydrogen-deuterium exchange experiments to define a catalytically-linked, radiating cone of aliphatic side chains that connects an active site iron center of SLO to the protein-solvent interface. Employing eight variants of SLO that have been appended with a fluorescent probe at the identified surface loop, nanosecond fluorescence Stokes shifts have been measured. We report a remarkable identity of the energies of activation (Ea) for the Stokes shifts decay rates and the millisecond C-H bond cleavage step that is restricted to side chain mutants within an identified thermal network. These findings implicate a direct coupling of distal protein motions surrounding the exposed fluorescent probe to active site motions controlling catalysis. While the role of dynamics in enzyme function has been predominantly attributed to a distributed protein conformational landscape, the presented data implicate a thermally initiated, cooperative protein reorganization that occurs on a timescale faster than nanosecond and represents the enthalpic barrier to the reaction of SLO.


Assuntos
Glycine max , Lipoxigenase , Corantes Fluorescentes , Movimento (Física) , Hidrogênio
6.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35110403

RESUMO

Magnetosomes are lipid-bound organelles that direct the biomineralization of magnetic nanoparticles in magnetotactic bacteria. Magnetosome membranes are not uniform in size and can grow in a biomineralization-dependent manner. However, the underlying mechanisms of magnetosome membrane growth regulation remain unclear. Using cryoelectron tomography, we systematically examined mutants with defects at various stages of magnetosome formation to identify factors involved in controlling membrane growth. We found that a conserved serine protease, MamE, plays a key role in magnetosome membrane growth regulation. When the protease activity of MamE is disrupted, magnetosome membrane growth is restricted, which, in turn, limits the size of the magnetite particles. Consistent with this finding, the upstream regulators of MamE protease activity, MamO and MamM, are also required for magnetosome membrane growth. We then used a combination of candidate and comparative proteomics approaches to identify Mms6 and MamD as two MamE substrates. Mms6 does not appear to participate in magnetosome membrane growth. However, in the absence of MamD, magnetosome membranes grow to a larger size than the wild type. Furthermore, when the cleavage of MamD by MamE protease is blocked, magnetosome membrane growth and biomineralization are severely inhibited, phenocopying the MamE protease-inactive mutant. We therefore propose that the growth of magnetosome membranes is controlled by a protease-mediated switch through processing of MamD. Overall, our work shows that, like many eukaryotic systems, bacteria control the growth and size of biominerals by manipulating the physical properties of intracellular organelles.


Assuntos
Proteínas de Bactérias/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Organelas/metabolismo , Serina Proteases/metabolismo , Óxido Ferroso-Férrico/metabolismo , Proteólise , Proteômica/métodos , Serina Endopeptidases/metabolismo
7.
Biochemistry ; 63(10): 1335-1346, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38690768

RESUMO

Lipoxygenases (LOXs) from pathogenic fungi are potential therapeutic targets for defense against plant and select human diseases. In contrast to the canonical LOXs in plants and animals, fungal LOXs are unique in having appended N-linked glycans. Such important post-translational modifications (PTMs) endow proteins with altered structure, stability, and/or function. In this study, we present the structural and functional outcomes of removing or altering these surface carbohydrates on the LOX from the devastating rice blast fungus, M. oryzae, MoLOX. Alteration of the PTMs did notinfluence the active site enzyme-substrate ground state structures as visualized by electron-nuclear double resonance (ENDOR) spectroscopy. However, removal of the eight N-linked glycans by asparagine-to-glutamine mutagenesis nonetheless led to a change in substrate selectivity and an elevated activation energy for the reaction with substrate linoleic acid, as determined by kinetic measurements. Comparative hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis of wild-type and Asn-to-Gln MoLOX variants revealed a regionally defined impact on the dynamics of the arched helix that covers the active site. Guided by these HDX results, a single glycan sequon knockout was generated at position 72, and its comparative substrate selectivity from kinetics nearly matched that of the Asn-to-Gln variant. The cumulative data from model glyco-enzyme MoLOX showcase how the presence, alteration, or removal of even a single N-linked glycan can influence the structural integrity and dynamics of the protein that are linked to an enzyme's catalytic proficiency, while indicating that extensive glycosylation protects the enzyme during pathogenesis by protecting it from protease degradation.


Assuntos
Lipoxigenase , Glicosilação , Lipoxigenase/metabolismo , Lipoxigenase/química , Lipoxigenase/genética , Especificidade por Substrato , Conformação Proteica , Domínio Catalítico , Processamento de Proteína Pós-Traducional , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Modelos Moleculares , Polissacarídeos/metabolismo , Polissacarídeos/química , Cinética , Ativação Enzimática
8.
Nature ; 562(7725): 140-144, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30209391

RESUMO

Extracellular electron transfer (EET) describes microbial bioelectrochemical processes in which electrons are transferred from the cytosol to the exterior of the cell1. Mineral-respiring bacteria use elaborate haem-based electron transfer mechanisms2-4 but the existence and mechanistic basis of other EETs remain largely unknown. Here we show that the food-borne pathogen Listeria monocytogenes uses a distinctive flavin-based EET mechanism to deliver electrons to iron or an electrode. By performing a forward genetic screen to identify L. monocytogenes mutants with diminished extracellular ferric iron reductase activity, we identified an eight-gene locus that is responsible for EET. This locus encodes a specialized NADH dehydrogenase that segregates EET from aerobic respiration by channelling electrons to a discrete membrane-localized quinone pool. Other proteins facilitate the assembly of an abundant extracellular flavoprotein that, in conjunction with free-molecule flavin shuttles, mediates electron transfer to extracellular acceptors. This system thus establishes a simple electron conduit that is compatible with the single-membrane structure of the Gram-positive cell. Activation of EET supports growth on non-fermentable carbon sources, and an EET mutant exhibited a competitive defect within the mouse gastrointestinal tract. Orthologues of the genes responsible for EET are present in hundreds of species across the Firmicutes phylum, including multiple pathogens and commensal members of the intestinal microbiota, and correlate with EET activity in assayed strains. These findings suggest a greater prevalence of EET-based growth capabilities and establish a previously underappreciated relevance for electrogenic bacteria across diverse environments, including host-associated microbial communities and infectious disease.


Assuntos
Transporte de Elétrons , Flavinas/metabolismo , Bactérias Gram-Positivas/metabolismo , Aerobiose , Animais , Benzoquinonas/metabolismo , Respiração Celular , Eletrodos , Transporte de Elétrons/genética , Elétrons , Feminino , Firmicutes/enzimologia , Firmicutes/genética , Firmicutes/metabolismo , Trato Gastrointestinal/microbiologia , Bactérias Gram-Positivas/enzimologia , Bactérias Gram-Positivas/genética , Ferro/química , Listeria monocytogenes/enzimologia , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Camundongos , NADH Desidrogenase/metabolismo
9.
J Biol Chem ; 298(9): 102350, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933011

RESUMO

The analysis of hydrogen deuterium exchange by mass spectrometry as a function of temperature and mutation has emerged as a generic and efficient tool for the spatial resolution of protein networks that are proposed to function in the thermal activation of catalysis. In this work, we extend temperature-dependent hydrogen deuterium exchange from apo-enzyme structures to protein-ligand complexes. Using adenosine deaminase as a prototype, we compared the impacts of a substrate analog (1-deaza-adenosine) and a very tight-binding inhibitor/transition state analog (pentostatin) at single and multiple temperatures. At a single temperature, we observed different hydrogen deuterium exchange-mass spectrometry properties for the two ligands, as expected from their 106-fold differences in strength of binding. By contrast, analogous patterns for temperature-dependent hydrogen deuterium exchange mass spectrometry emerge in the presence of both 1-deaza-adenosine and pentostatin, indicating similar impacts of either ligand on the enthalpic barriers for local protein unfolding. We extended temperature-dependent hydrogen deuterium exchange to a function-altering mutant of adenosine deaminase in the presence of pentostatin and revealed a protein thermal network that is highly similar to that previously reported for the apo-enzyme (Gao et al., 2020, JACS 142, 19936-19949). Finally, we discuss the differential impacts of pentostatin binding on overall protein flexibility versus site-specific thermal transfer pathways in the context of models for substrate-induced changes to a distributed protein conformational landscape that act in synergy with embedded protein thermal networks to achieve efficient catalysis.


Assuntos
Adenosina Desaminase , Deutério , Adenosina/química , Adenosina Desaminase/química , Deutério/química , Medição da Troca de Deutério , Ligantes , Pentostatina/química , Conformação Proteica , Proteínas , Temperatura
10.
Arch Biochem Biophys ; 733: 109472, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442529

RESUMO

Human platelet 12-lipoxygenase (h12-LOX) is responsible for the formation of oxylipin products that play an important role in platelet aggregation. Single nucleotide polymorphisms (SNPs) of h12-LOX have been implicated in several diseases. In this study, we investigate the structural, dynamical, and functional impact of a h12-LOX SNP that generates a tyrosine-to-cysteine mutation at a buried site (Y649C h12-LOX) and was previously ascribed with reduced levels of 12(S)-hydroxyeicosatetraenoic acid (12S-HETE) production in isolated platelets. Herein, in vitro Michaelis-Menten kinetics show reduced catalytic rates for Y649C compared to WT h12-LOX at physiological or lower temperatures. Both proteins exhibited similar melting temperatures, metal content, and oligomerization state. Liposome binding for both proteins was also dependent upon the presence of calcium, temperature, and liposome composition; however, the Y649C variant was found to have lowered binding capacity to liposomes compared to WT at physiological temperatures. Further, hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments revealed a regional defined enhancement in the peptide mobility caused by the mutation. This increased instability for the mutation stemmed from a change in an interaction with an arched helix that lines the substrate binding site, located ≥15 Å from the mutation site. Finally, differential scanning calorimetry demonstrated a reduced protein (un)folding enthalpy, consistent with the HDX results. Taken together, these results demonstrate remarkable similarity between the mutant and WT h12-LOX, and yet, subtle changes in activity, membrane affinity and protein stability may be responsible for the significant physiological changes that the Y649C SNP manifests in platelet biology.


Assuntos
Araquidonato 12-Lipoxigenase , Plaquetas , Humanos , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo , Plaquetas/metabolismo , Polimorfismo de Nucleotídeo Único , Deutério , Medição da Troca de Deutério , Lipossomos/metabolismo , Hidrogênio/metabolismo
11.
Nat Chem Biol ; 17(9): 982-988, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34354262

RESUMO

Direct, amplification-free detection of RNA has the potential to transform molecular diagnostics by enabling simple on-site analysis of human or environmental samples. CRISPR-Cas nucleases offer programmable RNA-guided RNA recognition that triggers cleavage and release of a fluorescent reporter molecule, but long reaction times hamper their detection sensitivity and speed. Here, we show that unrelated CRISPR nucleases can be deployed in tandem to provide both direct RNA sensing and rapid signal generation, thus enabling robust detection of ~30 molecules per µl of RNA in 20 min. Combining RNA-guided Cas13 and Csm6 with a chemically stabilized activator creates a one-step assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA extracted from respiratory swab samples with quantitative reverse transcriptase PCR (qRT-PCR)-derived cycle threshold (Ct) values up to 33, using a compact detector. This Fast Integrated Nuclease Detection In Tandem (FIND-IT) approach enables sensitive, direct RNA detection in a format that is amenable to point-of-care infection diagnosis as well as to a wide range of other diagnostic or research applications.


Assuntos
COVID-19/genética , Sistemas CRISPR-Cas/genética , RNA Viral/genética , SARS-CoV-2/genética , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Proc Natl Acad Sci U S A ; 117(37): 22849-22857, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32855301

RESUMO

The human CDK-activating kinase (CAK), a complex composed of cyclin-dependent kinase (CDK) 7, cyclin H, and MAT1, is a critical regulator of transcription initiation and the cell cycle. It acts by phosphorylating the C-terminal heptapeptide repeat domain of the RNA polymerase II (Pol II) subunit RPB1, which is an important regulatory event in transcription initiation by Pol II, and it phosphorylates the regulatory T-loop of CDKs that control cell cycle progression. Here, we have determined the three-dimensional (3D) structure of the catalytic module of human CAK, revealing the structural basis of its assembly and providing insight into CDK7 activation in this context. The unique third component of the complex, MAT1, substantially extends the interaction interface between CDK7 and cyclin H, explaining its role as a CAK assembly factor, and it forms interactions with the CDK7 T-loop, which may contribute to enhancing CAK activity. We have also determined the structure of the CAK in complex with the covalently bound inhibitor THZ1 in order to provide insight into the binding of inhibitors at the CDK7 active site and to aid in the rational design of therapeutic compounds.


Assuntos
Quinases Ciclina-Dependentes/ultraestrutura , Ciclo Celular , Divisão Celular , Microscopia Crioeletrônica/métodos , Quinases Ciclina-Dependentes/metabolismo , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Quinase Ativadora de Quinase Dependente de Ciclina
13.
Molecules ; 28(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570695

RESUMO

Natural products provide an unparalleled diversity of small molecules to fuel drug screening efforts, but deconvoluting the pharmacological activity of natural product mixtures to identify key bioactive compounds remains a vexing and labor-intensive process. Therefore, we have developed a new platform to probe the non-specific pharmacological potential of compounds present in common dietary supplements via shotgun derivatization with isotopically labeled propanoic acid, a live cell affinity assay, which was used to selectively recognize the population of compounds which bind tightly to HeLa cells in culture, and a computational LC-MS data analysis of isotopically labeled compounds from cell lysate. The data analysis showed that hundreds of compounds were successfully derivatized in each extract, and dozens of those compounds showed high affinity for HeLa cells. In total, over a thousand isotopically labeled compounds were screened for cell affinity across three separate experiments, resulting in the identification of several known bioactive compounds with specific protein targets and six previously unreported structures. The new natural products include three tulsinol compounds which were isolated from Ocimum tenuiflorum and three valeraninium alkaloids from Valeriana officinalis. The valeraninium alkaloids constitute a distinct new family of alkaloids from valerian, which may have previously undescribed bioactivity. These results collectively demonstrate the tag and snag workflow's viability as a drug discovery method.


Assuntos
Alcaloides , Produtos Biológicos , Humanos , Produtos Biológicos/química , Células HeLa , Alcaloides/farmacologia , Descoberta de Drogas/métodos , Espectrometria de Massas
14.
Environ Sci Technol ; 56(15): 10646-10655, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35861429

RESUMO

Despite the prevalence of nitrate reduction in groundwater, the biotransformation of per- and polyfluoroalkyl substances (PFAS) under nitrate-reducing conditions remains mostly unknown compared with aerobic or strong reducing conditions. We constructed microcosms under nitrate-reducing conditions to simulate the biotransformation occurring at groundwater sites impacted by aqueous film-forming foams (AFFFs). We investigated the biotransformation of 6:2 fluorotelomer thioether amido sulfonate (6:2 FtTAoS), a principal PFAS constituent of several AFFF formulations using both quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) and qualitative high-resolution mass spectrometry analyses. Our results reveal that the biotransformation rates of 6:2 FtTAoS under nitrate-reducing conditions were about 10 times slower than under aerobic conditions, but about 2.7 times faster than under sulfate-reducing conditions. Although minimal production of 6:2 fluorotelomer sulfonate and the terminal perfluoroalkyl carboxylate, perfluorohexanoate was observed, fluorotelomer thioether and sulfinyl compounds were identified in the aqueous samples. Evidence for the formation of volatile PFAS was obtained by mass balance analysis using the total oxidizable precursor assay and detection of 6:2 fluorotelomer thiol by gas chromatography-mass spectrometry. Our results underscore the complexity of PFAS biotransformation and the interactions between redox conditions and microbial biotransformation activities, contributing to the better elucidation of PFAS environmental fate and impact.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Alcanossulfonatos , Biotransformação , Cromatografia Líquida , Fluorocarbonos/análise , Nitratos/análise , Sulfetos , Espectrometria de Massas em Tandem , Água , Poluentes Químicos da Água/análise
15.
Nucleic Acids Res ; 48(9): 4698-4708, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32286628

RESUMO

The increasing use of CRISPR-Cas9 in medicine, agriculture, and synthetic biology has accelerated the drive to discover new CRISPR-Cas inhibitors as potential mechanisms of control for gene editing applications. Many anti-CRISPRs have been found that inhibit the CRISPR-Cas adaptive immune system. However, comparing all currently known anti-CRISPRs does not reveal a shared set of properties for facile bioinformatic identification of new anti-CRISPR families. Here, we describe AcRanker, a machine learning based method to aid direct identification of new potential anti-CRISPRs using only protein sequence information. Using a training set of known anti-CRISPRs, we built a model based on XGBoost ranking. We then applied AcRanker to predict candidate anti-CRISPRs from predicted prophage regions within self-targeting bacterial genomes and discovered two previously unknown anti-CRISPRs: AcrllA20 (ML1) and AcrIIA21 (ML8). We show that AcrIIA20 strongly inhibits Streptococcus iniae Cas9 (SinCas9) and weakly inhibits Streptococcus pyogenes Cas9 (SpyCas9). We also show that AcrIIA21 inhibits SpyCas9, Streptococcus aureus Cas9 (SauCas9) and SinCas9 with low potency. The addition of AcRanker to the anti-CRISPR discovery toolkit allows researchers to directly rank potential anti-CRISPR candidate genes for increased speed in testing and validation of new anti-CRISPRs. A web server implementation for AcRanker is available online at http://acranker.pythonanywhere.com/.


Assuntos
Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR/antagonistas & inibidores , Aprendizado de Máquina , Proteínas de Bactérias/química , Prófagos/genética , Proteoma , Análise de Sequência de Proteína , Streptococcus/enzimologia , Streptococcus/genética
16.
Proc Natl Acad Sci U S A ; 116(52): 26892-26899, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31818955

RESUMO

Mineral-respiring bacteria use a process called extracellular electron transfer to route their respiratory electron transport chain to insoluble electron acceptors on the exterior of the cell. We recently characterized a flavin-based extracellular electron transfer system that is present in the foodborne pathogen Listeria monocytogenes, as well as many other Gram-positive bacteria, and which highlights a more generalized role for extracellular electron transfer in microbial metabolism. Here we identify a family of putative extracellular reductases that possess a conserved posttranslational flavinylation modification. Phylogenetic analyses suggest that divergent flavinylated extracellular reductase subfamilies possess distinct and often unidentified substrate specificities. We show that flavinylation of a member of the fumarate reductase subfamily allows this enzyme to receive electrons from the extracellular electron transfer system and support L. monocytogenes growth. We demonstrate that this represents a generalizable mechanism by finding that a L. monocytogenes strain engineered to express a flavinylated extracellular urocanate reductase uses urocanate by a related mechanism and to a similar effect. These studies thus identify an enzyme family that exploits a modular flavin-based electron transfer strategy to reduce distinct extracellular substrates and support a multifunctional view of the role of extracellular electron transfer activities in microbial physiology.

17.
Biochemistry ; 60(10): 802-812, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33635645

RESUMO

It was previously shown that human platelet 12S-lipoxygenase (h12-LOX) exists as a dimer; however, the specific structure is unknown. In this study, we create a model of the dimer through a combination of computational methods, experimental mutagenesis, and hydrogen-deuterium exchange (HDX) investigations. Initially, Leu183 and Leu187 were replaced by negatively charged glutamate residues and neighboring aromatic residues were replaced with alanine residues (F174A/W176A/L183E/L187E/Y191A). This quintuple mutant disrupted both the hydrophobic and π-π interactions, generating an h12-LOX monomer. To refine the determinants for dimer formation further, the L183E/L187E mutant was generated and the equilibrium shifted mostly toward the monomer. We then submitted the predicted monomeric structure to protein-protein docking to create a model of the dimeric complex. A total of nine of the top 10 most energetically favorable docking conformations predict a TOP-to-TOP dimeric arrangement of h12-LOX, with the α-helices containing a Leu-rich region (L172, L183, L187, and L194), corroborating our experimental results showing the importance of these hydrophobic interactions for dimerization. This model was supported by HDX investigations that demonstrated the stabilization of four, non-overlapping peptides within helix α2 of the TOP subdomain for wt-h12-LOX, consistent with the dimer interface. Most importantly, our data reveal that the dimer and monomer of h12-LOX have distinct biochemical properties, suggesting that the structural changes due to dimerization have allosteric effects on active site catalysis and inhibitor binding.


Assuntos
Araquidonato 12-Lipoxigenase/química , Araquidonato 12-Lipoxigenase/metabolismo , Medição da Troca de Deutério/métodos , Simulação de Acoplamento Molecular/métodos , Mutagênese , Mutação , Multimerização Proteica , Araquidonato 12-Lipoxigenase/genética , Domínio Catalítico , Humanos , Modelos Moleculares , Conformação Proteica
18.
J Am Chem Soc ; 143(2): 785-797, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33395523

RESUMO

We report here on the salient role of protein mobility in accessing conformational landscapes that enable efficient enzyme catalysis. We are focused on yeast enolase, a highly conserved lyase with a TIM barrel domain and catalytic loop, as part of a larger study of the relationship of site selective protein motions to chemical reactivity within superfamilies. Enthalpically hindered variants were developed by replacement of a conserved hydrophobic side chain (Leu 343) with smaller side chains. Leu343 is proximal to the active site base in enolase, and comparative pH rate profiles for the valine and alanine variants indicate a role for side chain hydrophobicity in tuning the pKa of the catalytic base. However, the magnitude of a substrate deuterium isotope effect is almost identical for wild-type (WT) and Leu343Ala, supporting an unchanged rate-determining proton abstraction step. The introduced hydrophobic side chains at position 343 lead to a discontinuous break in both activity and activation energy as a function of side chain volume. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments were performed as a function of time and temperature for WT and Leu343Ala, and provide a spatially resolved map of changes in protein flexibility following mutation. Impacts on protein flexibility are localized to specific networks that arise at the protein-solvent interface and terminate in a loop that has been shown by X-ray crystallography to close over the active site. These interrelated effects are discussed in the context of long-range, solvent-accessible and thermally activated networks that play key roles in tuning the precise distances and interactions among reactants.


Assuntos
Liases/metabolismo , Temperatura , Água/metabolismo , Sítios de Ligação , Biocatálise , Cinética , Liases/química , Liases/genética , Modelos Moleculares , Mutação , Saccharomyces cerevisiae/enzimologia , Água/química
19.
Bioorg Med Chem ; 46: 116349, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34500187

RESUMO

Human epithelial 15-lipoxygenase-2 (h15-LOX-2, ALOX15B) is expressed in many tissues and has been implicated in atherosclerosis, cystic fibrosis and ferroptosis. However, there are few reported potent/selective inhibitors that are active ex vivo. In the current work, we report newly discovered molecules that are more potent and structurally distinct from our previous inhibitors, MLS000545091 and MLS000536924 (Jameson et al, PLoS One, 2014, 9, e104094), in that they contain a central imidazole ring, which is substituted at the 1-position with a phenyl moiety and with a benzylthio moiety at the 2-position. The initial three molecules were mixed-type, non-reductive inhibitors, with IC50 values of 0.34 ±â€¯0.05 µM for MLS000327069, 0.53 ±â€¯0.04 µM for MLS000327186 and 0.87 ±â€¯0.06 µM for MLS000327206 and greater than 50-fold selectivity versus h5-LOX, h12-LOX, h15-LOX-1, COX-1 and COX-2. A small set of focused analogs was synthesized to demonstrate the validity of the hits. In addition, a binding model was developed for the three imidazole inhibitors based on computational docking and a co-structure of h15-LOX-2 with MLS000536924. Hydrogen/deuterium exchange (HDX) results indicate a similar binding mode between MLS000536924 and MLS000327069, however, the latter restricts protein motion of helix-α2 more, consistent with its greater potency. Given these results, we designed, docked, and synthesized novel inhibitors of the imidazole scaffold and confirmed our binding mode hypothesis. Importantly, four of the five inhibitors mentioned above are active in an h15-LOX-2/HEK293 cell assay and thus they could be important tool compounds in gaining a better understanding of h15-LOX-2's role in human biology. As such, a suite of similar pharmacophores that target h15-LOX-2 both in vitro and ex vivo are presented in the hope of developing them as therapeutic agents.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Relação Dose-Resposta a Droga , Humanos , Cinética , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Estrutura Molecular , Relação Estrutura-Atividade
20.
Methods ; 184: 102-111, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32014607

RESUMO

The development of universal, broadly applicable methods for histone extraction from animal cells and tissues has unlocked the ability to compare these epigenetic-influencing proteins across tissue types, healthy and diseased states, and cancerous versus normal cells. However, for plants and green algae, a quick and easily implemented histone extraction method has yet to be developed. Here, we report an optimized method that provides a unified approach to extract histones for the green microalgal species Chlamydomonas reinhardtii and Scenedesmus dimorphus as well as for maize (corn) leaf tissue. Histone extraction methods include treatment with high salt concentrations and acidification. Preparations of nuclei can be made in ∼3.5 h and histones extracted in ∼3.5 h either immediately or nuclei may be frozen and histone proteins can be later extracted without a change in histone PTM patterns. To examine the efficiency of the new methods provided, we performed both qualitative and quantitative analysis of salt and acid-extracted whole histone proteins (SAEWH) via SDS-PAGE gel electrophoresis and intact protein mass spectrometry. SDS-PAGE analysis indicated that histone yields decrease when using walled Chlamydomonas strains relative to cell-wall-less mutants. Using top-down mass spectrometry (TDMS) for intact protein analysis, we confirmed the presence of H4K79me1 in multiple algal species; however, this unique modification was not identified in corn leaf tissue and has not been reported elsewhere. TDMS measurements of SAEWH extracts also revealed that oxidation which occurs during the histone extraction process does not increase with exposure of harvested algal cells, their nuclei and the extracted histone samples to light.


Assuntos
Histonas/isolamento & purificação , Espectrometria de Massas/métodos , Proteínas de Plantas/isolamento & purificação , Chlamydomonas reinhardtii/fisiologia , Eletroforese em Gel de Poliacrilamida/métodos , Código das Histonas , Histonas/metabolismo , Microalgas/fisiologia , Fotossíntese/genética , Folhas de Planta/metabolismo , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA