Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34983867

RESUMO

Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.


Assuntos
Mudança Climática , Árvores/fisiologia , Ecossistema , Fertilidade/fisiologia , Geografia , América do Norte , Incerteza
2.
Ecol Lett ; 27(9): e14500, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39354911

RESUMO

The fundamental trade-off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade-off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non-proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change.


Assuntos
Árvores , Clima Tropical , Árvores/crescimento & desenvolvimento , Mudança Climática , Reprodução , Florestas
3.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34400503

RESUMO

Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.


Assuntos
Fertilidade , Modelos Biológicos , Regeneração , Árvores/crescimento & desenvolvimento , Florestas
4.
Ecol Appl ; 33(4): e2821, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36806368

RESUMO

Invasive species science has focused heavily on the invasive agent. However, management to protect native species also requires a proactive approach focused on resident communities and the features affecting their vulnerability to invasion impacts. Vulnerability is likely the result of factors acting across spatial scales, from local to regional, and it is the combined effects of these factors that will determine the magnitude of vulnerability. Here, we introduce an analytical framework that quantifies the scale-dependent impact of biological invasions on native richness from the shape of the native species-area relationship (SAR). We leveraged newly available, biogeographically extensive vegetation data from the U.S. National Ecological Observatory Network to assess plant community vulnerability to invasion impact as a function of factors acting across scales. We analyzed more than 1000 SARs widely distributed across the USA along environmental gradients and under different levels of non-native plant cover. Decreases in native richness were consistently associated with non-native species cover, but native richness was compromised only at relatively high levels of non-native cover. After accounting for variation in baseline ecosystem diversity, net primary productivity, and human modification, ecoregions that were colder and wetter were most vulnerable to losses of native plant species at the local level, while warmer and wetter areas were most susceptible at the landscape level. We also document how the combined effects of cross-scale factors result in a heterogeneous spatial pattern of vulnerability. This pattern could not be predicted by analyses at any single scale, underscoring the importance of accounting for factors acting across scales. Simultaneously assessing differences in vulnerability between distinct plant communities at local, landscape, and regional scales provided outputs that can be used to inform policy and management aimed at reducing vulnerability to the impact of plant invasions.


Assuntos
Biodiversidade , Ecossistema , Humanos , Espécies Introduzidas , Plantas , Geografia
5.
Ecol Lett ; 25(6): 1471-1482, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460530

RESUMO

Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.


Assuntos
Florestas , Árvores , Biodiversidade , Clima , Fertilidade , Sementes
6.
Dig Endosc ; 34(6): 1176-1184, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35189669

RESUMO

OBJECTIVES: When bowel preparation (BP) is inadequate, international guidelines recommend repeating the colonoscopy within 1 year to avoid missing clinically relevant lesions. We aimed to determine the rate of missed lesions in patients with inadequate BP through a very early repeat colonoscopy with adequate BP. METHODS: Post hoc analysis was conducted using data collected from a prospective multicenter randomized clinical trial including patients with inadequate BP and then repeat colonoscopy. Inadequate BP was defined as the Boston Bowel Preparation Scale (BBPS) score <2 points in any segment. We included patients with any indication for colonoscopy. The adenoma detection rate (ADR), advanced ADR (AADR), and serrated polyp detection rate (SPDR) were calculated for index and repeat colonoscopies. RESULTS: Of the 651 patients with inadequate BP from the original trial, 413 (63.4%) achieved adequate BP on repeat colonoscopy. The median interval between index and repeat colonoscopies was 28 days. On repeat colonoscopy, the ADR was 45.3% (95% confidence interval [CI] 40.5-50.1%), the AADR was 10.9% (95% CI 8.1-14.3%), and the SPDR was 14.3% (95% CI 10.9-17.7%). Cancer was discovered in four patients (1%; 95% CI 0.2-2.5%). A total of 60.2% of all advanced adenoma (AA) were discovered on repeat colonoscopy. A colon segment scored BBPS = 0 had most AA (66.1%) and all four cancers. CONCLUSION: Patients with inadequate BP present a high rate of AAs on repeat colonoscopy. When a colonoscopy has a colon segment score BBPS = 0, we recommend repeating the colonoscopy as soon as possible.


Assuntos
Adenoma , Pólipos do Colo , Adenoma/diagnóstico , Catárticos , Pólipos do Colo/diagnóstico , Pólipos do Colo/patologia , Colonoscopia , Humanos , Prevalência , Estudos Prospectivos
7.
Clin Infect Dis ; 73(11): e4020-e4024, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33103195

RESUMO

We provide detailed clinical, virological, and immunological data of a B-cell-depleted patient treated with obinutuzumab for follicular lymphoma with protracted coronavirus disease 2019 (COVID-19) and viremia. A sustained response was achieved after 2 courses of remdesivir and subsequent convalescent plasma therapy. Immunocompromised patients might require combined and prolonged antiviral treatment regimens.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , COVID-19/terapia , Humanos , Imunização Passiva , SARS-CoV-2 , Soroterapia para COVID-19
8.
Glob Chang Biol ; 27(16): 3883-3897, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33977598

RESUMO

Phenological escape, a strategy that deciduous understory plants use to access direct light in spring by leafing out before the canopy closes, plays an important role in shaping the recruitment of temperate tree seedlings. Previous studies have investigated how climate change will alter these dynamics for herbaceous species, but there is a knowledge gap related to how woody species such as tree seedlings will be affected. Here, we modeled temperate tree seedling leaf-out phenology and canopy close phenology in response to environmental drivers and used climate change projections to forecast changes to the duration of spring phenological escape. We then used these predictions to estimate changes in annual carbon assimilation while accounting for reduced carbon assimilation rates associated with hotter and drier summers. Lastly, we applied these estimates to previously published models of seedling growth and survival to investigate the net effect on seedling demographic performance. Our models predict that temperate tree seedlings will experience improved phenological escape and, therefore, increased spring carbon assimilation under climate change conditions. However, increased summer respiration costs will offset the gains in spring under extreme climate change leading to a net loss in annual carbon assimilation and demographic performance. Furthermore, we found that annual carbon assimilation predictions depend strongly on the species of nearby canopy tree that seedlings were planted near, with all seedlings projected to assimilate less carbon (and therefore experience worse demographic performance) when planted near Quercus rubra canopy trees as opposed to Acer saccharum canopy trees. We conclude that changes to spring phenological escape will have important effects on how tree seedling recruitment is affected by climate change, with the magnitude of these effects dependent upon climate change severity and biological interactions with neighboring adults. Thus, future studies of temperate forest recruitment should account for phenological escape dynamics in their models.


Assuntos
Acer , Árvores , Mudança Climática , Demografia , Folhas de Planta , Estações do Ano , Plântula
9.
Ecol Appl ; 30(5): e02098, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083369

RESUMO

Revegetation is the most common procedure in the restoration of disturbed areas; this practice usually aims at reconstructing plant communities that can last without further management. A low-cost strategy to assist these efforts is the application of ecological knowledge in the design of the restoration. Promoting ecological processes that enhance the functioning of the restored community could result in higher restoration success. Among these processes, plant-plant interactions, e.g., facilitation and competition, can play an important role, both facilitating and impeding the development of a self-sustaining plant community. Although these processes have been well-studied in nature, we rarely have sufficient knowledge about the whole plant community. To develop that knowledge, we leverage on a restoration experiment that took place after a mine toxic spill, where ~15,000 woody plants from 13 species were planted and geolocated. Species were planted in three mixtures mimicking natural communities found along soil moisture gradients (xerophyte, intermediate, and hydrophyte). Plantings also varied in density. Approximately 2,600 plants were monitored for damage status, survival, and growth, for 4 yr. We analyzed growth performance of six targeted species as a function of their damage status, planted mixture, and density. Growth was also assessed on the basis of neighboring plants, accounting for the species identity and distance to the focal plant. Results show that survival among planted species was relatively high and was mostly unaffected by mixture or density of the plantings. Only very damaged plants in one species experienced a decrease in survival with increasing density. Neighborhood effects on growth show positive, neutral, and negative interactions among the tested species; these also varied depending on the type of growth performance considered (height, crown area, diameter). The species-specific results ranged from positive to negative, varying between pair of species and growth performance metric. Results gathered from our neighborhood analyses on plant growth provide valuable information for the design of planting schemes that could enhance the performance of the target species. The methods developed can be applied to other systems and species. Given the potential impacts that facilitation and competition may have during revegetation, these interactions could be considered in restoration operations.


Assuntos
Plantas , Solo , Ecossistema , Desenvolvimento Vegetal
10.
Ecology ; 99(2): 411-420, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29341107

RESUMO

Most forest ecosystems are simultaneously affected by concurrent global change drivers. However, when assessing these effects, studies have mainly focused on the responses to single factors and have rarely evaluated the joined effects of the multiple aspects of environmental change. Here, we analyzed the combined effects of anthropogenic nitrogen (N) deposition and climatic conditions on the radial growth of Acer saccharum, a dominant tree species in eastern North American forests. We capitalized on a long-term N deposition study, replicated along a latitudinal gradient, that has been taking place for more than 20 yr. We analyzed tree radial growth as a function of anthropogenic N deposition (ambient and experimental addition) and of summer temperature and soil water conditions. Our results reveal that experimental N deposition enhances radial growth of this species, an effect that was accentuated as temperature increased and soil water became more limiting. The spatial and temporal extent of our data also allowed us to assert that the positive effects of growing under the experimental N deposition are likely due to changes in the physiological performance of this species, and not due to the positive correlation between soil N and soil water holding capacity, as has been previously speculated in other studies. Our simulations of tree growth under forecasted climate scenarios specific for this region also revealed that although anthropogenic N deposition may enhance tree growth under a large array of environmental conditions, it will not mitigate the expected effects of growing under the considerably drier conditions characteristic of our most extreme climatic scenario.


Assuntos
Nitrogênio , Árvores , Mudança Climática , Ecossistema , Florestas
11.
Anal Bioanal Chem ; 410(30): 7965-7977, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30397756

RESUMO

Hepatocellular carcinoma (HCC) is one of the deadliest cancers due to its late diagnosis with the main risk factor being liver cirrhosis (LC). Glycan structures from glycoproteins are usually altered in cancer. Blood plasma from 111 healthy and sick donors was analyzed to determine the post-translational modifications (PTM) of intact Aα-, Bß-, and γ-subunits of fibrinogen, a glycoprotein predominantly produced in liver cells. Glycosylation and phosphorylation of the protein species were quantified by liquid chromatography coupled to mass spectrometry to correlate PTMs to pathological cases. Quantities of the PTMs were used for statistical classification by principal component analysis (PCA) and multivariate analysis of variance (MANOVA). As relevant clinical finding, patients with liver disease (HCC and/or LC) were distinguished from individuals without relevant chronic liver disease with 91% sensitivity and 100% specificity. Within the group of patients with liver disease, a robust separation between LC and HCC was not possible. In more detail, the phosphorylation of Aα-subunit is decreased in HCC patients, whereas the monophosphorylated state is significantly increased in LC patients. In terms of glycosylation, the amount of O-glycans in the Aα-subunit is decreased in LC patients, while sialylation and fucosylation of N-type glycans of Bß- and γ-subunits are increased in LC and HCC. Based on PTM of fibrinogen, starting from plasma we can assign the status of an individual as healthy or as liver disease in less than 3 h.


Assuntos
Carcinoma Hepatocelular , Fibrinogênio/química , Cirrose Hepática , Neoplasias Hepáticas , Carcinoma Hepatocelular/fisiopatologia , Glicosilação , Humanos , Cirrose Hepática/fisiopatologia , Neoplasias Hepáticas/fisiopatologia , Fosforilação , Processamento de Proteína Pós-Traducional , Padrões de Referência , Fatores de Tempo
12.
Oecologia ; 184(3): 701-713, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28573380

RESUMO

Predictions of plant responses to climate change are frequently based on organisms' presence in warmer locations, which are then assumed to reflect future performance in cooler areas. However, as plant life stages may be affected differently by environmental changes, there is little empirical evidence that this approach provides reliable estimates of short-term responses to global warming. Under this premise, we analyzed 8 years of early recruitment data, seed production and seedling establishment and survival, collected for two tree species at two latitudes. We quantified recruitment to a wide range of environmental conditions, temperature, soil moisture and light, and simulated recruitment under two forecasted climatic scenarios. Annual demographic transitions were affected by the particular conditions taking place during their onset, but the effects of similar environmental shifts differed among the recruitment stages; seed production was higher in warmer years, while seedling establishment and survival peaked during cold years. Within a species, these effects also varied between latitudes; increasing temperatures at the southern location will have stronger detrimental effects on recruitment than similar changes at the northern locations. Our simulations illustrate that warmer temperatures may increase seed production, but they will have a negative effect on establishment and survival. When the three early recruitment processes were simultaneously considered, simulations showed little change in recruitment dynamics at the northern site and a slight decrease at the southern site. It is only when we considered these three stages that we were able to assess likely changes in early recruitment under the predicted conditions.


Assuntos
Mudança Climática , Aquecimento Global , Plântula/crescimento & desenvolvimento , Clima , Solo , Árvores
13.
Ecology ; 97(9): 2331-2341, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27859086

RESUMO

Plant distributions are expected to shift in response to climate change, and range expansion dynamics will be shaped by the performance of individuals at the colonizing front. These plants will encounter new biotic communities beyond their range edges, and the net outcome of these encounters could profoundly affect colonization success. However, little is known about how biotic interactions vary across range edges and this has hindered efforts to predict changes in species distributions in response to climate change. In contrast, a rich literature documents how biotic interactions within species ranges vary according to distance to and density of conspecific individuals. Here, we test whether this framework can be extended to explain how biotic interactions differ beyond range edges, where conspecific adults are basically absent. To do so, we planted seven species of trees along a 450-km latitudinal gradient that crossed the current distributional range of five of these species and monitored foliar disease and invertebrate herbivory over 5 yr. Foliar disease and herbivory were analyzed as a function of distance to and density of conspecific and congeneric trees at several spatial scales. We found that within species ranges foliar disease was lower for seedlings that were farther from conspecific adults for Acer rubrum, Carya glabra, Quercus alba, and Robinia pseudoacacia. Beyond range edges, there was even less foliar disease for C. glabra, Q. alba, and R. pseudoacacia (A. rubrum was not planted outside its range). Liriodendron tulipifera did not experience reduced disease within or beyond its range. In contrast, Quercus velutina displayed significant but idiosyncratic patterns in disease at varying distances from conspecifics. Patterns of distance dependent herbivory across spatial scales was generally weak and in some cases negative (i.e., seedlings farther from conspecific adults had more herbivory). Overall, we conclude that differences in biotic interactions across range edges can be thought of as a spatial extension to the concept of distance dependent biotic interactions. This framework also provides the basis for general predictions of how distance dependent biotic interactions will change across range edges in other systems.


Assuntos
Mudança Climática , Doenças das Plantas , Folhas de Planta , Árvores , Ecossistema , Herbivoria , Dispersão Vegetal , Plântula
14.
Glob Chang Biol ; 22(7): 2329-52, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26898361

RESUMO

We synthesize insights from current understanding of drought impacts at stand-to-biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand-level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the eastern US, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate-induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought-tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance.


Assuntos
Biodiversidade , Secas , Florestas , Ecossistema , Árvores , Estados Unidos
15.
Ecol Appl ; 26(3): 913-25, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27411260

RESUMO

As increasing levels of nitrogen (N) deposition impact many terrestrial ecosystems, understanding the potential effects of higher N availability is critical for forecasting tree carbon allocation patterns and thus future forest productivity. Most regional estimates of forest biomass apply allometric equations, with parameters estimated from a limited number of studies, to forest inventory data (i.e., tree diameter). However most of these allometric equations cannot account for potential effects of increased N availability on biomass allocation patterns. Using 18 yr of tree diameter, height, and mortality data collected for a dominant tree species (Acer saccharum) in an atmospheric N deposition experiment, we evaluated how greater N availability affects allometric relationships in this species. After taking into account site and individual variability, our results reveal significant differences in allometric parameters between ambient and experimental N deposition treatments. Large trees under experimental N deposition reached greater heights at a given diameter; moreover, their estimated maximum height (mean ± standard deviation: 33.7 ± 0.38 m) was significantly higher than that estimated under the ambient condition (31.3 ± 0.31 m). Within small tree sizes (5-10 cm diameter) there was greater mortality under experimental N deposition, whereas the relative growth rates of small trees were greater under experimental N deposition. Calculations of stemwood biomass using our parameter estimates for the diameter-height relationship indicated the potential for significant biases in these estimates (~2.5%), with under predictions of stemwood biomass averaging 4 Mg/ha lower if ambient parameters were to be used to estimate stem biomass of trees in the experimental N deposition treatment. As atmospheric N deposition continues to increase into the future, ignoring changes in tree allometry will contribute to the uncertainty associated with aboveground carbon storage estimates across a forest with a large geographic distribution in eastern North America.


Assuntos
Acer/fisiologia , Biomassa , Carbono/metabolismo , Nitrogênio/química , Árvores/metabolismo , Fatores de Tempo
16.
Ecology ; 95(2): 364-75, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24669730

RESUMO

Understanding the dynamics of tree establishment is critical to assess forests' composition, management practices, and current responses to global change. We carried out a field seedling transplant experiment to assess not only the direct effects of resources influencing recruitment of four tree species, but also their indirect and combined effects. Our analysis integrated first growing season demographic data together with estimates of mycorrhizal fungal colonization and resource availability (light, soil moisture, and soil nitrogen). Only by considering both the direct and indirect effects of resources we were able to account for most of the variability observed during seedling recruitment. Contrary to expectations, increasing light levels were not always beneficial for recruitment even in low light habitats, and soil moisture availability benefited seedling growth but not survival. In addition, mycorrhizal fungal colonization was not always favored by high light levels or by increasing soil moisture. Seedling survival for all species was lower in plots with higher arbuscular mycorrhizal fungi, while the association with ectomycorrhizal fungi varied from beneficial to detrimental. When integrating the direct, indirect, and interactive effects of resource availability and mycorrhizal fungal colonization on tree recruitment dynamics we found that species responded in a nonlinear fashion to increasing resource levels, and we also identified thresholds, i.e., shifts in the direction of the response, along the resource gradient. Our integrated assessment considerably outperformed a null model where only direct effects of resources were accounted for. These results illustrate how the combination of direct, indirect, and combined effects of driving variables better represents the complexity of the processes determining tree species recruitment than simple resource availability mechanisms.


Assuntos
Ecossistema , Árvores/classificação , Árvores/fisiologia , Solo/química , Especificidade da Espécie , Água/química
17.
Ecol Appl ; 24(7): 1793-802, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-29210238

RESUMO

Phenological events, such as the timing of flowering or insect emergence, are influenced by a complex combination of climatic and non-climatic factors. Although temperature is generally considered most important, other weather events such as frosts and precipitation events can also influence many species' phenology. Non-climatic variables such as photoperiod and site-specific habitat characteristics can also have important effects on phenology. Forecasting phenological shifts due to climate change requires understanding and quantifying how these multiple factors combine to affect phenology. However, current approaches to analyzing phenological data have a limited ability for quantifying multiple drivers simultaneously. Here, we use a novel statistical approach to estimate the combined effects of multiple variables, including local weather events, on the phenology of several taxa (a tree, an insect, and a fungus). We found that thermal forcing had a significant positive effect on each species, frost events delayed the phenology of the tree and butterfly, and precipitation had a positive effect on fungal fruiting. Using data from sites across latitudinal gradients, we found that these effects are remarkably consistent across sites once latitude and other site effects are accounted for. This consistency suggests an underlying biological response to these variables that is not commonly estimated using data from field observations. This approach's flexibility will be useful for forecasting ongoing phenological responses to changes in climate variability in addition to seasonal trends.


Assuntos
Ascomicetos/fisiologia , Modelos Biológicos , Morus/fisiologia , Mariposas/fisiologia , Estações do Ano , Tempo (Meteorologia) , Animais , Fatores de Tempo
18.
Ecol Appl ; 24(1): 25-37, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24640532

RESUMO

As the main witnesses of the ecological and economic impacts of invasions on ecosystems around the world, ecologists seek to provide the relevant science that informs managers about the potential for invasion of specific organisms in their region(s) of interest. Yet, the assorted literature that could inform such forecasts is rarely integrated to do so, and further, the diverse nature of the data available complicates synthesis and quantitative prediction. Here we present a set of analytical tools for synthesizing different levels of distributional and/or demographic data to produce meaningful assessments of invasion potential that can guide management at multiple phases of ongoing invasions, from dispersal to colonization to proliferation. We illustrate the utility of data-synthesis and data-model assimilation approaches with case studies of three well-known invasive species--a vine, a marine mussel, and a freshwater crayfish--under current and projected future climatic conditions. Results from the integrated assessments reflect the complexity of the invasion process and show that the most relevant climatic variables can have contrasting effects or operate at different intensities across habitat types. As a consequence, for two of the study species climate trends will increase the likelihood of invasion in some habitats and decrease it in others. Our results identified and quantified both bottlenecks and windows of opportunity for invasion, mainly related to the role of human uses of the landscape or to disruption of the flow of resources. The approach we describe has a high potential to enhance model realism, explanatory insight, and predictive capability, generating information that can inform management decisions and optimize phase-specific prevention and control efforts for a wide range of biological invasions.


Assuntos
Espécies Introduzidas , Modelos Biológicos , Modelos Estatísticos , Animais , Astacoidea/fisiologia , Celastrus/fisiologia , Demografia , Mytilus/fisiologia , Estados Unidos
19.
Plant Environ Interact ; 5(4): e70002, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39131952

RESUMO

Arbuscular mycorrhizal fungi (AMF) are widespread obligate symbionts of plants. This dynamic symbiosis plays a large role in successful plant performance, given that AMF help to ameliorate plant responses to abiotic and biotic stressors. Although the importance of this symbiosis is clear, less is known about what may be driving this symbiosis, the plant's need for nutrients or the excess of plant photosynthate being transferred to the AMF, information critical to assess the functionality of this relationship. Characterizing the AMF community along a natural plant productivity gradient is a first step in understanding how this symbiosis may vary across the landscape. We surveyed the AMF community diversity at 12 sites along a plant productivity gradient driven by soil nitrogen availability. We found that AMF diversity in soil environmental DNA significantly increased along with the growth of the host plants Acer rubrum and A. saccharum., a widespread tree genus. These increases also coincided with a natural soil inorganic N availability gradient. We hypothesize photosynthate from the increased tree growth is being allocated to the belowground AMF community, leading to an increase in diversity. These findings contribute to understanding this complex symbiosis through the lens of AMF turnover and suggest that a more diverse AMF community is associated with increased host-plant performance.

20.
Ecol Lett ; 16(2): 261-70, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23062213

RESUMO

Climate change and biological invasions are primary threats to global biodiversity that may interact in the future. To date, the hypothesis that climate change will favour non-native species has been examined exclusively through local comparisons of single or few species. Here, we take a meta-analytical approach to broadly evaluate whether non-native species are poised to respond more positively than native species to future climatic conditions. We compiled a database of studies in aquatic and terrestrial ecosystems that reported performance measures of non-native (157 species) and co-occurring native species (204 species) under different temperature, CO(2) and precipitation conditions. Our analyses revealed that in terrestrial (primarily plant) systems, native and non-native species responded similarly to environmental changes. By contrast, in aquatic (primarily animal) systems, increases in temperature and CO(2) largely inhibited native species. There was a general trend towards stronger responses among non-native species, including enhanced positive responses to more favourable conditions and stronger negative responses to less favourable conditions. As climate change proceeds, aquatic systems may be particularly vulnerable to invasion. Across systems, there could be a higher risk of invasion at sites becoming more climatically hospitable, whereas sites shifting towards harsher conditions may become more resistant to invasions.


Assuntos
Ecossistema , Espécies Introduzidas , Fenômenos Fisiológicos Vegetais , Dióxido de Carbono , Mudança Climática , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA