Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(23): e114272, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37929762

RESUMO

Endoplasmic reticulum (ER) proteostasis is maintained by various catabolic pathways. Lysosomes clear entire ER portions by ER-phagy, while proteasomes selectively clear misfolded or surplus aberrant proteins by ER-associated degradation (ERAD). Recently, lysosomes have also been implicated in the selective clearance of aberrant ER proteins, but the molecular basis remains unclear. Here, we show that the phosphatidylinositol-3-phosphate (PI3P)-binding protein TOLLIP promotes selective lysosomal degradation of aberrant membrane proteins, including an artificial substrate and motoneuron disease-causing mutants of VAPB and Seipin. These cargos are recognized by TOLLIP through its misfolding-sensing intrinsically disordered region (IDR) and ubiquitin-binding CUE domain. In contrast to ER-phagy receptors, which clear both native and aberrant proteins by ER-phagy, TOLLIP selectively clears aberrant cargos by coupling them with the PI3P-dependent lysosomal trafficking without promoting bulk ER turnover. Moreover, TOLLIP depletion augments ER stress after ERAD inhibition, indicating that TOLLIP and ERAD cooperatively safeguard ER proteostasis. Our study identifies TOLLIP as a unique type of cargo-specific adaptor dedicated to the clearance of aberrant ER cargos and provides insights into molecular mechanisms underlying lysosome-mediated quality control of membrane proteins.


Assuntos
Autofagia , Proteínas de Membrana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Lisossomos/metabolismo , Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(43): e2307118120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844241

RESUMO

In various epithelial tissues, the epithelial monolayer acts as a barrier. To fulfill its function, the structural integrity of the epithelium is tightly controlled. When normal epithelial cells detach from the basal substratum and delaminate into the apical lumen, the apically extruded cells undergo apoptosis, which is termed anoikis. In contrast, transformed cells often become resistant to anoikis and able to survive and grow in the apical luminal space, leading to the formation of multilayered structures, which can be observed at the early stage of carcinogenesis. However, the underlying molecular mechanisms still remain elusive. In this study, we first demonstrate that S100A10 and ANXA2 (Annexin A2) accumulate in apically extruded, transformed cells in both various cell culture systems and murine epithelial tissues in vivo. ANXA2 acts upstream of S100A10 accumulation. Knockdown of ANXA2 promotes apoptosis of apically extruded RasV12-transformed cells and suppresses the formation of multilayered epithelia. In addition, the intracellular reactive oxygen species (ROS) are elevated in apically extruded RasV12 cells. Treatment with ROS scavenger Trolox reduces the occurrence of apoptosis of apically extruded ANXA2-knockdown RasV12 cells and restores the formation of multilayered epithelia. Furthermore, ROS-mediated p38MAPK activation is observed in apically delaminated RasV12 cells, and ANXA2 knockdown further enhances the p38MAPK activity. Moreover, the p38MAPK inhibitor promotes the formation of multilayered epithelia of ANXA2-knockdown RasV12 cells. These results indicate that accumulated ANXA2 diminishes the ROS-mediated p38MAPK activation in apically extruded transformed cells, thereby blocking the induction of apoptosis. Hence, ANXA2 can be a potential therapeutic target to prevent multilayered, precancerous lesions.


Assuntos
Anexina A2 , Animais , Camundongos , Anexina A2/genética , Apoptose , Células Epiteliais , Epitélio , Espécies Reativas de Oxigênio
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101972

RESUMO

Neuroinflammation is well known to be associated with neurodegenerative diseases. Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase that has been implicated in neuroinflammation, but its precise cellular and molecular mechanisms remain unknown. In this study, we generated conditional knockout (CKO) mice that lack ASK1 in T cells, dendritic cells, microglia/macrophages, microglia, or astrocytes, to assess the roles of ASK1 during experimental autoimmune encephalomyelitis (EAE). We found that neuroinflammation was reduced in both the early and later stages of EAE in microglia/macrophage-specific ASK1 knockout mice, whereas only the later-stage neuroinflammation was ameliorated in astrocyte-specific ASK1 knockout mice. ASK1 deficiency in T cells and dendritic cells had no significant effects on EAE severity. Further, we found that ASK1 in microglia/macrophages induces a proinflammatory environment, which subsequently activates astrocytes to exacerbate neuroinflammation. Microglia-specific ASK1 deletion was achieved using a CX3CR1CreER system, and we found that ASK1 signaling in microglia played a major role in generating and maintaining disease. Activated astrocytes produce key inflammatory mediators, including CCL2, that further activated and recruited microglia/macrophages, in an astrocytic ASK1-dependent manner. Astrocyte-specific analysis revealed CCL2 expression was higher in the later stage compared with the early stage, suggesting a greater proinflammatory role of astrocytes in the later stage. Our findings demonstrate cell-type-specific roles of ASK1 and suggest phase-specific ASK1-dependent glial cell interactions in EAE pathophysiology. We propose glial ASK1 as a promising therapeutic target for reducing neuroinflammation.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , MAP Quinase Quinase Quinase 5/imunologia , Microglia/imunologia , Esclerose Múltipla/imunologia , Transdução de Sinais/imunologia , Animais , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/genética , Inflamação/genética , Inflamação/imunologia , MAP Quinase Quinase Quinase 5/genética , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Esclerose Múltipla/genética , Transdução de Sinais/genética , Linfócitos T/imunologia
4.
J Biol Chem ; 299(2): 102837, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581206

RESUMO

A high-salt diet significantly impacts various diseases, ilncluding cancer and immune diseases. Recent studies suggest that the high-salt/hyperosmotic environment in the body may alter the chronic properties of cancer and immune cells in the disease context. However, little is known about the acute metabolic changes in hyperosmotic stress. Here, we found that hyperosmotic stress for a few minutes induces Warburg-like metabolic remodeling in HeLa and Raw264.7 cells and suppresses fatty acid oxidation. Regarding Warburg-like remodeling, we determined that the pyruvate dehydrogenase phosphorylation status was altered bidirectionally (high in hyperosmolarity and low in hypoosmolarity) to osmotic stress in isolated mitochondria, suggesting that mitochondria themselves have an acute osmosensing mechanism. Additionally, we demonstrate that Warburg-like remodeling is required for HeLa cells to maintain ATP levels and survive under hyperosmotic conditions. Collectively, our findings suggest that cells exhibit acute metabolic remodeling under osmotic stress via the regulation of pyruvate dehydrogenase phosphorylation by direct osmosensing within mitochondria.


Assuntos
Mitocôndrias , Pressão Osmótica , Oxirredutases , Piruvatos , Humanos , Células HeLa , Mitocôndrias/metabolismo , Oxirredutases/metabolismo , Fosforilação , Piruvatos/metabolismo , Células RAW 264.7 , Animais , Camundongos
5.
EMBO Rep ; 22(5): e51532, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33822458

RESUMO

Ferroptosis has recently attracted much interest because of its relevance to human diseases such as cancer and ischemia-reperfusion injury. We have reported that prolonged severe cold stress induces lipid peroxidation-dependent ferroptosis, but the upstream mechanism remains unknown. Here, using genome-wide CRISPR screening, we found that a mitochondrial Ca2+ uptake regulator, mitochondrial calcium uptake 1 (MICU1), is required for generating lipid peroxide and subsequent ferroptosis under cold stress. Furthermore, the gatekeeping activity of MICU1 through mitochondrial calcium uniporter (MCU) is suggested to be indispensable for cold stress-induced ferroptosis. MICU1 is required for mitochondrial Ca2+ increase, hyperpolarization of the mitochondrial membrane potential (MMP), and subsequent lipid peroxidation under cold stress. Collectively, these findings suggest that the MICU1-dependent mitochondrial Ca2+ homeostasis-MMP hyperpolarization axis is involved in cold stress-induced lipid peroxidation and ferroptosis.


Assuntos
Proteínas de Transporte de Cátions , Ferroptose , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Resposta ao Choque Frio , Humanos , Potencial da Membrana Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
6.
J Biol Chem ; 295(10): 3148-3158, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32014991

RESUMO

Cu, Zn superoxide dismutase (SOD1) is one of the genes implicated in the devastating neurodegenerative disorder amyotrophic lateral sclerosis (ALS). Although the precise mechanisms of SOD1 mutant (SOD1mut)-induced motoneuron toxicity are still unclear, defects in SOD1 proteostasis are known to have a critical role in ALS pathogenesis. We previously reported that the SOD1mut adopts a conformation that exposes a Derlin-1-binding region (DBR) and that DBR-exposed SOD1 interacts with Derlin-1, leading to motoneuron death. We also found that an environmental change, i.e. zinc depletion, induces a conformational change in WT SOD1 (SOD1WT) to the DBR-exposed conformation, suggesting the presence of an equilibrium state between the DBR-masked and DBR-exposed states even with SOD1WT Here, we conducted a high-throughput screening based on time-resolved FRET to further investigate the SOD1WT conformational change, and we used a genome-wide siRNA screen to search for regulators of SOD1 proteostasis. This screen yielded 30 candidate genes that maintained an absence of the DBR-exposed SOD1WT conformation. Among these genes was one encoding DDB1- and CUL4-associated factor 4 (DCAF4), a substrate receptor of the E3 ubiquitin-protein ligase complex. Of note, we found that DCAF4 mediates the ubiquitination of an ALS-associated protein and autophagy receptor, optineurin (OPTN), and facilitates autophagic degradation of DBR-exposed SOD1. In summary, our screen identifies DCAF4 as being required for proper proteostasis of DBR-exposed SOD1, which may have potential relevance for the development of therapies for managing ALS.


Assuntos
Autofagia , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Superóxido Dismutase-1/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Proteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Proteostase/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Superóxido Dismutase-1/genética , Ubiquitinação , Wortmanina/farmacologia
7.
J Biol Chem ; 295(17): 5588-5601, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32144202

RESUMO

Accumulating evidence suggests that brown adipose tissue (BAT) is a potential therapeutic target for managing obesity and related diseases. PGAM family member 5, mitochondrial serine/threonine protein phosphatase (PGAM5), is a protein phosphatase that resides in the mitochondria and regulates many biological processes, including cell death, mitophagy, and immune responses. Because BAT is a mitochondria-rich tissue, we have hypothesized that PGAM5 has a physiological function in BAT. We previously reported that PGAM5-knockout (KO) mice are resistant to severe metabolic stress. Importantly, lipid accumulation is suppressed in PGAM5-KO BAT, even under unstressed conditions, raising the possibility that PGAM5 deficiency stimulates lipid consumption. However, the mechanism underlying this observation is undetermined. Here, using an array of biochemical approaches, including quantitative RT-PCR, immunoblotting, and oxygen consumption assays, we show that PGAM5 negatively regulates energy expenditure in brown adipocytes. We found that PGAM5-KO brown adipocytes have an enhanced oxygen consumption rate and increased expression of uncoupling protein 1 (UCP1), a protein that increases energy consumption in the mitochondria. Mechanistically, we found that PGAM5 phosphatase activity and intramembrane cleavage are required for suppression of UCP1 activity. Furthermore, utilizing a genome-wide siRNA screen in HeLa cells to search for regulators of PGAM5 cleavage, we identified a set of candidate genes, including phosphatidylserine decarboxylase (PISD), which catalyzes the formation of phosphatidylethanolamine at the mitochondrial membrane. Taken together, these results indicate that PGAM5 suppresses mitochondrial energy expenditure by down-regulating UCP1 expression in brown adipocytes and that its phosphatase activity and intramembrane cleavage are required for UCP1 suppression.


Assuntos
Adipócitos Marrons/metabolismo , Regulação para Baixo , Metabolismo Energético , Proteínas Mitocondriais/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteína Desacopladora 1/genética , Animais , Células Cultivadas , Células HeLa , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/genética , Consumo de Oxigênio , Fosfoproteínas Fosfatases/genética , Proteína Desacopladora 1/metabolismo
8.
Cancer Sci ; 112(4): 1633-1643, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33565179

RESUMO

Tumor metastasis is the leading cause of death worldwide and involves an extremely complex process composed of multiple steps. Our previous study demonstrated that apoptosis signal-regulating kinase 1 (ASK1) deficiency in mice attenuates tumor metastasis in an experimental lung metastasis model. However, the steps of tumor metastasis regulated by ASK1 remain unclear. Here, we showed that ASK1 deficiency in mice promotes natural killer (NK) cell-mediated intravascular tumor cell clearance in the initial hours of metastasis. In response to tumor inoculation, ASK1 deficiency upregulated immune response-related genes, including interferon-gamma (IFNγ). We also revealed that NK cells are required for these anti-metastatic phenotypes. ASK1 deficiency augmented cytokine production chemoattractive to NK cells possibly through induction of the ligand for NKG2D, a key activating receptor of NK cells, leading to further recruitment of NK cells into the lung. These results indicate that ASK1 negatively regulates NK cell-dependent anti-tumor immunity and that ASK1-targeted therapy can provide a new tool for cancer immunotherapy to overcome tumor metastasis.


Assuntos
Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MAP Quinase Quinase Quinase 5/metabolismo , Metástase Neoplásica/patologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Imunoterapia/métodos , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/imunologia , Células RAW 264.7
9.
Cell Physiol Biochem ; 55(S1): 135-160, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33877747

RESUMO

Cells are constantly exposed to the risk of volume perturbation under physiological conditions. The increase or decrease in cell volume accompanies intracellular changes in cell membrane tension, ionic strength/concentration and macromolecular crowding. To avoid deleterious consequences caused by cell volume perturbation, cells have volume recovery systems that regulate osmotic water flow by transporting ions and organic osmolytes across the cell membrane. Thus far, a number of biomolecules have been reported to regulate cell volume. However, the question of how cells sense volume change and modulate volume regulatory systems is not fully understood. Recently, the existence and significance of phaseseparated biomolecular condensates have been revealed in numerous physiological events, including cell volume perturbation. In this review, we summarize the current understanding of cell volume-sensing mechanisms, introduce recent studies on biomolecular condensates induced by cell volume change and discuss how biomolecular condensates contribute to cell volume sensing and cell volume maintenance. In addition to previous studies of biochemistry, molecular biology and cell biology, a phase separation perspective will allow us to understand the complicated volume regulatory systems of cells.


Assuntos
Membrana Celular/metabolismo , Tamanho Celular , Animais , Citoplasma/metabolismo , Humanos , Pressão Osmótica/fisiologia
10.
Nat Immunol ; 10(8): 918-26, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19597496

RESUMO

Apoptosis is central to the interaction between pathogenic mycobacteria and host macrophages. Caspase-8-dependent apoptosis of infected macrophages, which requires activation of the mitogen-activated protein (MAP) kinase p38, lowers the spread of mycobacteria. Here we establish a link between the release of tumor necrosis factor (TNF) and mycobacteria-mediated macrophage apoptosis. TNF activated a pathway involving the kinases ASK1, p38 and c-Abl. This pathway led to phosphorylation of FLIP(S), which facilitated its interaction with the E3 ubiquitin ligase c-Cbl. This interaction triggered proteasomal degradation of FLIP(S), which promoted activation of caspase-8 and apoptosis. Our findings identify a previously unappreciated signaling pathway needed for Mycobacterium tuberculosis-triggered macrophage cell death.


Assuntos
Apoptose/fisiologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Macrófagos/fisiologia , Mycobacterium tuberculosis/fisiologia , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Caspase 8/metabolismo , Linhagem Celular , Proliferação de Células , Humanos , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Knockout , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Transdução de Sinais , Ubiquitinação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Mol Cell ; 52(1): 75-86, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24076220

RESUMO

Zinc is an essential trace element, and impaired zinc homeostasis is implicated in the pathogenesis of various human diseases. However, the mechanisms cells use to respond to zinc deficiency are poorly understood. We previously reported that amyotrophic lateral sclerosis (ALS)-linked pathogenic mutants of SOD1 cause chronic endoplasmic reticulum (ER) stress through specific interactions with Derlin-1, which is a component of the ER-associated degradation machinery. Moreover, we recently demonstrated that this interaction is common to ALS-linked SOD1 mutants, and wild-type SOD1 (SOD1(WT)) comprises a masked Derlin-1 binding region (DBR). Here, we found that, under zinc-deficient conditions, SOD1(WT) adopts a mutant-like conformation that exposes the DBR and induces the homeostatic ER stress response, including the inhibition of protein synthesis and induction of a zinc transporter. We conclude that SOD1 has a function as a molecular switch that activates the ER stress response, which plays an important role in cellular homeostasis under zinc-deficient conditions.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/enzimologia , Superóxido Dismutase/metabolismo , Zinco/deficiência , Sítios de Ligação , Proteínas de Transporte de Cátions/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Homeostase , Humanos , Proteínas de Membrana/metabolismo , Ligação Proteica , Conformação Proteica , Interferência de RNA , Transdução de Sinais , Relação Estrutura-Atividade , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Fatores de Tempo , Transfecção , Regulação para Cima
12.
Proc Natl Acad Sci U S A ; 115(14): 3646-3651, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29555767

RESUMO

Daily rhythms of behaviors and physiologies are generated by the circadian clock, which is composed of clock genes and the encoded proteins forming transcriptional/translational feedback loops (TTFLs). The circadian clock is a self-sustained oscillator and flexibly responds to various time cues to synchronize with environmental 24-h cycles. However, the key molecule that transmits cellular stress to the circadian clockwork is unknown. Here we identified apoptosis signal-regulating kinase (ASK), a member of the MAPKKK family, as an essential mediator determining the circadian period and phase of cultured cells in response to osmotic changes of the medium. The physiological impact of ASK signaling was demonstrated by a response of the clock to changes in intracellular redox states. Intriguingly, the TTFLs drive rhythmic expression of Ask genes, indicating ASK-mediated association of the TTFLs with intracellular redox. In behavioral analysis, Ask1, Ask2, and Ask3 triple-KO mice exhibited compromised light responses of the circadian period and phase in their activity rhythms. LC-MS/MS-based proteomic analysis identified a series of ASK-dependent and osmotic stress-responsive phosphorylations of proteins, among which CLOCK, a key component of the molecular clockwork, was phosphorylated at Thr843 or Ser845 in the carboxyl-terminal region. These findings reveal the ASK-dependent stress response as an underlying mechanism of circadian clock flexibility.


Assuntos
Relógios Circadianos/fisiologia , MAP Quinase Quinase Quinase 5/fisiologia , MAP Quinase Quinase Quinases/fisiologia , Pressão Osmótica , Animais , Comportamento Animal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Fosforilação , Processamento de Proteína Pós-Traducional , Proteômica , Transdução de Sinais
13.
Mol Cell ; 48(5): 692-704, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23102700

RESUMO

Reactive oxygen species (ROS)-induced activation of Apoptosis signal-regulating kinase 1 (ASK1) plays crucial roles in oxidative stress-mediated cell death through the activation of the JNK and p38 MAPK pathways. However, the regulatory mechanism of ASK1 in the oxidative stress response remains to be elucidated. Here, we identified the kelch repeat protein, Slim, as an activator of ASK1 through a Drosophila misexpression screen. We also performed a proteomics screen and revealed that Kelch domain containing 10 (KLHDC10), a mammalian ortholog of Slim, interacted with Protein phosphatase 5 (PP5), which has been shown to inactivate ASK1 in response to ROS. KLHDC10 bound to the phosphatase domain of PP5 and suppressed its phosphatase activity. Moreover, KLHDC10 was required for H(2)O(2)-induced sustained activation of ASK1 and cell death in Neuro2A cells. These findings suggest that Slim/KLHDC10 is an activator of ASK1, contributing to oxidative stress-induced cell death through the suppression of PP5.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteínas Nucleares/metabolismo , Estresse Oxidativo , Fosfoproteínas Fosfatases/metabolismo , Animais , Proteínas de Transporte/genética , Morte Celular , Linhagem Celular Tumoral , Clonagem Molecular , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Ativação Enzimática , Regulação da Expressão Gênica , Células HEK293 , Humanos , Peróxido de Hidrogênio/farmacologia , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinases/genética , Melaninas/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Fosfoproteínas Fosfatases/genética , Mutação Puntual , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteômica , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Cancer Sci ; 110(8): 2337-2347, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31120184

RESUMO

Cancer metastasis is the most frequent cause of death for patients with cancer. The main current treatment for cancer metastasis is chemotherapy targeting cancer cells' ability to proliferate. However, some types of cancer cells show resistance to chemotherapy. Recently, cancer cell migration has become the subject of interest as a novel target of cancer therapy. Cell migration requires many factors, such as the cytoskeleton, cell-matrix adhesion and cell volume regulation. Here, we focus on cell volume regulation and the role of ion/water transport systems in cell migration. Transport proteins, such as ion channels, ion carriers, and aquaporins, are indispensable for cell volume regulation under steady-state conditions and during exposure to osmotic stress. Studies from the last ~25 years have revealed that cell volume regulation also plays an important role in the process of cell migration. Water flow in accordance with localized osmotic gradients generated by ion transport contributes to the driving force for cell migration. Moreover, it has been reported that metastatic cancer cells have higher expression of these transport proteins than nonmetastatic cancer cells. Thus, ion/water transport proteins involved in cell volume regulation and cell migration could be novel therapeutic targets for cancer metastasis. In this review, after presenting the importance of ion/water transport systems in cell volume regulation, we discuss the roles of transport proteins in a pathophysiological context, especially in the context of cancer cell migration.


Assuntos
Movimento Celular/fisiologia , Transporte de Íons/fisiologia , Neoplasias/metabolismo , Neoplasias/patologia , Osmose/fisiologia , Água/metabolismo , Animais , Tamanho Celular , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Transporte Proteico/fisiologia
15.
Blood ; 129(9): 1197-1209, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28028021

RESUMO

Mitogen-activated protein kinases (MAPKs) are expressed in platelets and are activated downstream of physiological agonists. Pharmacological and genetic evidence indicate that MAPKs play a significant role in hemostasis and thrombosis, but it is not well understood how MAPKs are activated upon platelet stimulation. Here, we show that apoptosis signal-regulating kinase 1 (ASK1), a member of the MAP3K family, is expressed in both human and murine platelets. ASK1 is rapidly and robustly activated upon platelet stimulation by physiological agonists. Disruption of Ask1 (Ask1-/- ) resulted in a marked functional defect in platelets. Ask1-/- platelets showed an impaired agonist-induced integrin αIIbß3 activation and platelet aggregation. Although there was no difference in Ca2+ rise, platelet granule secretion and thromboxane A2 (TxA2) generation were significantly attenuated in Ask1-/- platelets. The defective granule secretion observed in Ask1-/- platelets was a consequence of impaired TxA2 generation. Biochemical studies showed that platelet agonists failed to activate p38 MAPK in Ask1-/- platelets. On the contrary, activation of c-Jun N-terminal kinases and extracellular signal-regulated kinase 1/2 MAPKs was augmented in Ask1-/- platelets. The defect in p38 MAPK results in failed phosphorylation of cPLA2 in Ask1-/- platelets and impaired platelet aggregate formation under flow. The absence of Ask1 renders mice defective in hemostasis as assessed by prolonged tail-bleeding times. Deletion of Ask1 also reduces thrombosis as assessed by delayed vessel occlusion of carotid artery after FeCl3-induced injury and protects against collagen/epinephrine-induced pulmonary thromboembolism. These results suggest that the platelet Ask1 plays an important role in regulation of hemostasis and thrombosis.


Assuntos
Coagulação Sanguínea/fisiologia , Plaquetas/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Ativação Plaquetária/fisiologia , Tromboxano A2/biossíntese , Animais , Grânulos Citoplasmáticos/metabolismo , Feminino , Citometria de Fluxo , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
EMBO Rep ; 18(11): 2067-2078, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28887319

RESUMO

A wide variety of cell death mechanisms, such as ferroptosis, have been proposed in mammalian cells, and the classification of cell death attracts global attention because each type of cell death has the potential to play causative roles in specific diseases. However, the precise molecular mechanisms leading to cell death are poorly understood, particularly in ferroptosis. Here, we show that continuous severe cold stress induces ferroptosis and the ASK1-p38 MAPK pathway in multiple cell lines. The activation of the ASK1-p38 pathway is mediated by critical determinants of ferroptosis: MEK activity, iron ions, and lipid peroxide. The chemical compound erastin, a potent ferroptosis inducer, also activates the ASK1-p38 axis downstream of lipid peroxide accumulation and leads to ASK1-dependent cell death in a cell type-specific manner. These lines of evidence provide mechanistic insight into ferroptosis, a type of regulated necrosis.


Assuntos
Apoptose/genética , Ferro/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Estresse Fisiológico/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células A549 , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Temperatura Baixa , Regulação da Expressão Gênica , Células HEK293 , Células HT29 , Células Hep G2 , Humanos , Peróxidos Lipídicos/biossíntese , MAP Quinase Quinase Quinase 5/genética , Especificidade de Órgãos , Piperazinas/farmacologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética
17.
Hum Mol Genet ; 25(2): 245-53, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26604152

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no cure. To develop effective treatments for this devastating disease, an appropriate strategy for targeting the molecule responsible for the pathogenesis of ALS is needed. We previously reported that mutant SOD1 protein causes motor neuron death through activation of ASK1, a mitogen-activated protein kinase kinase kinase. Additionally, we recently developed K811 and K812, which are selective inhibitors for ASK1. Here, we report the effect of K811 and K812 in a mouse model of ALS (SOD1(G93A) transgenic mice). Oral administration of K811 or K812 significantly extended the life span of SOD1(G93A) transgenic mice (1.06 and 1.08% improvement in survival). Moreover, ASK1 activation observed in the lumbar spinal cord of mice at the disease progression stage was markedly decreased in the K811- and K812-treated groups. In parallel, immunohistochemical analysis revealed that K811 and K812 treatment inhibited glial activation in the lumbar spinal cord of SOD1(G93A) transgenic mice. These results reinforce the importance of ASK1 as a therapeutic target for ALS treatment.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Antineoplásicos/uso terapêutico , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Modelos Animais de Doenças , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Masculino , Camundongos , Camundongos Transgênicos , Resultado do Tratamento
18.
Biochim Biophys Acta Gen Subj ; 1862(10): 2271-2280, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30031111

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1) is a key player in the homeostatic response of many organisms. Of the many functions of ASK1, it is most well-known for its ability to induce canonical caspase 3-dependent apoptosis through the MAPK pathways in response to reactive oxygen species (ROS). As ASK1 is a regulator of apoptosis, its proper regulation is critical for the well-being of an organism. To date, several E3 ubiquitin ligases have been identified that are capable of degrading ASK1, signifying the importance of maintaining ASK1 expression levels during stress responses. ASK1 protein regulation under unstimulated conditions, however, is still largely unknown. Using tandem mass spectrometry, we have identified beta-transducin repeat containing protein (ß-TrCP), an E3 ubiquitin ligase, as a novel interacting partner of ASK1 that is capable of ubiquitinating and subsequently degrading ASK1 through the ubiquitin-proteasome system (UPS). This interaction requires the seven WD domains of ß-TrCP and the C-terminus of ASK1. By silencing the ß-TrCP genes, we observed a significant increase in caspase 3 activity in response to oxidative stress, which could subsequently be suppressed by silencing ASK1. These findings suggest that ß-TrCP is capable of suppressing oxidative stress-induced caspase 3-dependent apoptosis through suppression of ASK1, assisting in the organism's ability to maintain homeostasis in an unstable environment.


Assuntos
Apoptose , MAP Quinase Quinase Quinase 5/metabolismo , Estresse Oxidativo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Células HEK293 , Humanos , MAP Quinase Quinase Quinase 5/química , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Ubiquitinação , Proteínas Contendo Repetições de beta-Transducina/química
19.
Biochim Biophys Acta ; 1860(9): 2037-52, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27261090

RESUMO

BACKGROUND: Osmotic stress arises from the difference between intracellular and extracellular osmolality. It induces cell swelling or shrinkage as a consequence of water influx or efflux, which threatens cellular activities. Mitogen-activated protein kinases (MAPKs) play central roles in signaling pathways in osmotic stress responses, including the regulation of intracellular levels of inorganic ions and organic osmolytes. SCOPE OF REVIEW: The present review summarizes the cellular osmotic stress response and the function and regulation of the vertebrate MAPK signaling pathways involved. We also describe recent findings regarding apoptosis signal-regulating kinase 3 (ASK3), a MAP3K member, to demonstrate its regulatory effects on signaling molecules beyond MAPKs. MAJOR CONCLUSIONS: MAPKs are rapidly activated by osmotic stress and have diverse roles, such as cell volume regulation, gene expression, and cell survival/death. There is significant cell type specificity in the function and regulation of MAPKs. Based on its activity change during osmotic stress and its regulation of the WNK1-SPAK/OSR1 pathway, ASK3 is expected to play important roles in osmosensing mechanisms and cellular functions related to osmoregulation. GENERAL SIGNIFICANCE: MAPKs are essential for various cellular responses to osmotic stress; thus, the identification of the upstream regulators of MAPK pathways will provide valuable clues regarding the cellular osmosensing mechanism, which remains elusive in mammals. The elucidation of in vivo MAPK functions is also important because osmotic stress in physiological and pathophysiological conditions often results from changes in the intracellular osmolality. These studies potentially contribute to the establishment of therapeutic strategies against diseases that accompany osmotic perturbation.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osmorregulação/fisiologia , Pressão Osmótica/fisiologia , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Sobrevivência Celular/fisiologia , Expressão Gênica/fisiologia , Humanos
20.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3030-3038, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27693599

RESUMO

BACKGROUND: Apoptosis signal-regulating kinase 1 (ASK1), also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5), has the potential to induce cellular apoptosis under various physiological conditions. It has long been suggested that ASK1 is highly sensitive to oxidative stress and contributes substantially to apoptosis. However, recent studies have indicated that ASK1 has pleiotropic roles in living organisms through other mechanisms in addition to apoptosis. SCOPE OF THE REVIEW: This review describes the physiological functions of ASK1 in living organisms, focusing on the regulatory mechanisms of ASK1 activity and its importance in the pathogenesis of various diseases. We also highlight recent works published within the past few years. MAJOR CONCLUSIONS: ASK1 forms a high-molecular-mass complex within the cell, designated as the ASK1 signalosome. Soon after the discovery of ASK1, several regulatory components of the ASK1 signalosome have been revealed, including thioredoxin (Trx), tumor-necrosis factor α receptor-associated factors (TRAFs) and 14-3-3s. In parallel with the precise analyses unveiling the molecular basis of ASK1 regulation, the physiological or pathophysiological significance of ASK1 in diverse organs has been elucidated. In addition to the generation of global knockout mice or tissue-specific knockout mice, ASK1-specific inhibitors have illuminated the biological roles of ASK1. GENERAL SIGNIFICANCE: The multi-faceted features of the function of ASK1 have been discovered over the past two decades, revealing that ASK1 is a crucial molecule for maintaining cellular homeostasis, especially under conditions of stress. Based on the results that ASK1 deficiency provides beneficial effects for several diseases, modulating ASK1 activity is a promising method to ameliorate a subset of diseases.


Assuntos
Pleiotropia Genética , MAP Quinase Quinase Quinase 5/metabolismo , Animais , Doença , Humanos , Modelos Biológicos , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA