Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Neurol ; 31(3): e16071, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37754770

RESUMO

BACKGROUND AND PURPOSE: Loss of long-term potentiation (LTP) expression has been associated with a worse disease course in relapsing-remitting multiple sclerosis (RR-MS) and represents a pathophysiological hallmark of progressive multiple sclerosis (PMS). Exercise and physical rehabilitation are the most prominent therapeutic approaches to promote synaptic plasticity. We aimed to explore whether physical exercise is able to improve the expression of LTP-like plasticity in patients with multiple sclerosis (MS). METHODS: In 46 newly diagnosed RR-MS patients, we explored the impact of preventive exercise on LTP-like plasticity as assessed by intermittent theta-burst stimulation. Patients were divided into sedentary or active, based on physical activity performed during the 6 months prior to diagnosis. Furthermore, in 18 patients with PMS, we evaluated the impact of an 8-week inpatient neurorehabilitation program on clinical scores and LTP-like plasticity explored using paired associative stimulation (PAS). Synaptic plasticity expression was compared in patients and healthy subjects. RESULTS: Reduced LTP expression was found in RR-MS patients compared with controls. Exercising RR-MS patients showed a greater amount of LTP expression compared with sedentary patients. In PMS patients, LTP expression was reduced compared with controls and increased after 8 weeks of rehabilitation. In this group of patients, LTP magnitude at baseline predicted the improvement in hand dexterity. CONCLUSIONS: Both preventive exercise and physical rehabilitation may enhance the expression of LTP-like synaptic plasticity in MS, with potential beneficial effects on disability accumulation.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Potenciação de Longa Duração/fisiologia , Estimulação Magnética Transcraniana , Plasticidade Neuronal/fisiologia , Exercício Físico , Potencial Evocado Motor/fisiologia
2.
Mult Scler ; 29(4-5): 512-520, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36803228

RESUMO

BACKGROUND: Individual genetic variability may influence the course of multiple sclerosis (MS). The interleukin (IL)-8C>T rs2227306 single nucleotide polymorphism (SNP) regulates IL-8 activity in other clinical conditions; however, its role in MS has never been investigated. OBJECTIVES: To explore the association between IL-8 SNP rs2227306, cerebrospinal fluid (CSF) IL-8 concentrations, clinical, and radiological characteristics in a group of newly diagnosed MS patients. METHODS: In 141 relapsing-remitting (RR)-MS patients, rs2227306 polymorphism, CSF levels of IL-8, clinical, and demographical characteristics were determined. In 50 patients, structural magnetic resonance imaging (MRI) measures were also assessed. RESULTS: An association between CSF IL-8 and Expanded Disability Status Scale (EDSS) at diagnosis was found in our set of patients (r = 0.207, p = 0.014). CSF IL-8 concentrations were significantly higher in patients carrying the T variant of rs2227306 (p = 0.004). In the same group, a positive correlation emerged between IL-8 and EDSS (r = 0.273, p = 0.019). Finally, a negative correlation between CSF levels of IL-8 and cortical thickness emerged in rs2227306T carriers (r = -0.498, p = 0.005). CONCLUSION: We describe for the first time a role of SNP rs2227306 of IL-8 gene in regulating the expression and the activity of this inflammatory cytokine in MS.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico , Interleucina-8/genética , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Citocinas , Imageamento por Ressonância Magnética
3.
Neurobiol Dis ; 172: 105817, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835361

RESUMO

BACKGROUND: Elevated levels of specific proinflammatory molecules in the cerebrospinal fluid (CSF) have been associated with disability progression, enhanced neurodegeneration and higher incidence of mood disorders in people with multiple sclerosis (MS). Studies in animal models of MS suggest that preventive exercise may play an immunomodulatory activity, with beneficial effects on both motor deficits and behavioral alterations. Here we explored the impact of lifestyle physical activity on clinical presentation and associated central inflammation in a large group of newly diagnosed patients with MS. Furthermore, we addressed the causal link between exercise-mediated immunomodulation and mood symptoms in the animal setting. METHODS: A cross-sectional study was conducted on 235 relapsing-remitting MS patients at the time of the diagnosis. Patients were divided into 3 groups ("sedentary", "lifestyle physical activity" and "exercise") according to the level of physical activity in the six months preceding the evaluation. Patients underwent clinical, neuropsychological and psychiatric evaluation, magnetic resonance imaging and lumbar puncture for diagnostic purposes. The CSF levels of proinflammatory and anti-inflammatory cytokines were analyzed and compared with a group of 80 individuals with non-inflammatory and non-degenerative diseases. Behavioral and electrophysiological studies were carried out in control mice receiving intracerebral injection of IL-2 or vehicle. Behavior was also assessed in mice with experimental autoimmune encephalomyelitis (EAE), animal model of MS, reared in standard (sedentary group) or running wheel-equipped (exercise group) cages. RESULTS: In exercising MS patients, depression and anxiety were reduced compared to sedentary patients. The CSF levels of the interleukin-2 and 6 (IL-2, IL-6) were increased in MS patients compared with control individuals. In MS subjects exercise was associated with normalized CSF levels of IL-2. In EAE mice exercise started before disease onset reduced both behavioral alterations and striatal IL-2 expression. Notably, a causal role of IL-2 in mood disorders was shown. IL-2 administration in control healthy mice induced anxious- and depressive-like behaviors and impaired type-1 cannabinoid (CB1) receptor-mediated neurotransmission at GABAergic synapses, mimicking EAE-induced synaptic dysfunction. CONCLUSIONS: Our results indicate an immunomodulatory effect of exercise in MS patients, associated with reduced CSF expression of IL-2, which might result in reduced mood disorders. These data suggest that exercise in the early stages may act as a disease-modifying therapy in MS although further longitudinal studies are needed to clarify this issue.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Estudos Transversais , Encefalomielite Autoimune Experimental/patologia , Humanos , Interleucina-2/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Transtornos do Humor/etiologia
4.
Mult Scler ; 26(10): 1237-1246, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31161863

RESUMO

BACKGROUND: Previous studies evidenced a link between metabolic dysregulation, inflammation, and neurodegeneration in multiple sclerosis (MS). OBJECTIVES: To explore whether increased adipocyte mass expressed as body mass index (BMI) and increased serum lipids influence cerebrospinal fluid (CSF) inflammation and disease severity. METHODS: In this cross-sectional study, 140 consecutive relapsing-remitting (RR)-MS patients underwent clinical assessment, BMI evaluation, magnetic resonance imaging scan, and blood and CSF collection before any specific drug treatment. The CSF levels of the following cytokines, adipocytokines, and inflammatory factors were measured: interleukin (IL)-6, IL-13, granulocyte macrophage colony-stimulating factor, leptin, ghrelin, osteoprotegerin, osteopontin, plasminogen activator inhibitor-1, resistin, and Annexin A1. Serum levels of triglycerides, total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C) were assessed. RESULTS: A positive correlation emerged between BMI and Expanded Disability Status Scale score. Obese RR-MS patients showed higher clinical disability, increased CSF levels of the proinflammatory molecules IL-6 and leptin, and reduced concentrations of the anti-inflammatory cytokine IL-13. Moreover, both the serum levels of triglycerides and TC/HDL-C ratio showed a positive correlation with IL-6 CSF concentrations. CONCLUSION: Obesity and altered lipid profile are associated with exacerbated central inflammation and higher clinical disability in RR-MS at the time of diagnosis. Increased adipocytokines and lipids can mediate the negative impact of high adiposity on RR-MS course.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Estudos Transversais , Humanos , Inflamação , Esclerose Múltipla/complicações , Esclerose Múltipla Recidivante-Remitente/complicações , Obesidade/complicações
5.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977401

RESUMO

In multiple sclerosis (MS), inflammation alters synaptic transmission and plasticity, negatively influencing the disease course. In the present study, we aimed to explore the influence of the proinflammatory cytokine IL-1ß on peculiar features of associative Hebbian synaptic plasticity, such as input specificity, using the paired associative stimulation (PAS). In 33 relapsing remitting-MS patients and 15 healthy controls, PAS was performed on the abductor pollicis brevis (APB) muscle. The effects over the motor hot spot of the APB and abductor digiti minimi (ADM) muscles were tested immediately after PAS and 15 and 30 min later. Intracortical excitability was tested with paired-pulse transcranial magnetic stimulation (TMS). The cerebrospinal fluid (CSF) levels of IL-1ß were calculated. In MS patients, PAS failed to induce long-term potentiation (LTP)-like effects in the APB muscle and elicited a paradoxical motor-evoked potential (MEP) increase in the ADM. IL-1ß levels were negatively correlated with the LTP-like response in the APB muscle. Moreover, IL-1ß levels were associated with synaptic hyperexcitability tested with paired-pulse TMS. Synaptic hyperexcitability caused by IL-1ß may critically contribute to alter Hebbian plasticity in MS, inducing a loss of topographic specificity.


Assuntos
Potencial Evocado Motor , Interleucina-1beta/líquido cefalorraquidiano , Potenciação de Longa Duração , Estimulação Magnética Transcraniana , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/terapia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia
6.
Int J Mol Sci ; 20(24)2019 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-31817968

RESUMO

Studies of brain network connectivity improved understanding on brain changes and adaptation in response to different pathologies. Synaptic plasticity, the ability of neurons to modify their connections, is involved in brain network remodeling following different types of brain damage (e.g., vascular, neurodegenerative, inflammatory). Although synaptic plasticity mechanisms have been extensively elucidated, how neural plasticity can shape network organization is far from being completely understood. Similarities existing between synaptic plasticity and principles governing brain network organization could be helpful to define brain network properties and reorganization profiles after damage. In this review, we discuss how different forms of synaptic plasticity, including homeostatic and anti-homeostatic mechanisms, could be directly involved in generating specific brain network characteristics. We propose that long-term potentiation could represent the neurophysiological basis for the formation of highly connected nodes (hubs). Conversely, homeostatic plasticity may contribute to stabilize network activity preventing poor and excessive connectivity in the peripheral nodes. In addition, synaptic plasticity dysfunction may drive brain network disruption in neuropsychiatric conditions such as Alzheimer's disease and schizophrenia. Optimal network architecture, characterized by efficient information processing and resilience, and reorganization after damage strictly depend on the balance between these forms of plasticity.


Assuntos
Encéfalo/fisiologia , Potenciação de Longa Duração , Plasticidade Neuronal , Doença de Alzheimer/fisiopatologia , Animais , Humanos , Esquizofrenia/fisiopatologia
7.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878257

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelinating white matter lesions and neurodegeneration, with a variable clinical course. Brain network architecture provides efficient information processing and resilience to damage. The peculiar organization characterized by a low number of highly connected nodes (hubs) confers high resistance to random damage. Anti-homeostatic synaptic plasticity, in particular long-term potentiation (LTP), represents one of the main physiological mechanisms underlying clinical recovery after brain damage. Different types of synaptic plasticity, including both anti-homeostatic and homeostatic mechanisms (synaptic scaling), contribute to shape brain networks. In MS, altered synaptic functioning induced by inflammatory mediators may represent a further cause of brain network collapse in addition to demyelination and grey matter atrophy. We propose that impaired LTP expression and pathologically enhanced upscaling may contribute to disrupting brain network topology in MS, weakening resilience to damage and negatively influencing the disease course.


Assuntos
Esclerose Múltipla/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Inflamação/metabolismo , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia
8.
J Neuroinflammation ; 15(1): 108, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29655371

RESUMO

BACKGROUND: In the early phases of relapsing-remitting multiple sclerosis (RR-MS), a clear correlation between brain lesion load and clinical disability is often lacking, originating the so-called clinico-radiological paradox. Different factors may contribute to such discrepancy. In particular, synaptic plasticity may reduce the clinical expression of brain damage producing enduring enhancement of synaptic strength largely dependent on neurotrophin-induced protein synthesis. Cytokines released by the immune cells during acute inflammation can alter synaptic transmission and plasticity possibly influencing the clinical course of MS. In addition, immune cells may promote brain repair during the post-acute phases, by secreting different growth factors involved in neuronal and oligodendroglial cell survival. Platelet-derived growth factor (PDGF) is a neurotrophic factor that could be particularly involved in clinical recovery. Indeed, PDGF promotes long-term potentiation of synaptic activity in vitro and in MS and could therefore represent a key factor improving the clinical compensation of new brain lesions. The aim of the present study is to explore whether cerebrospinal fluid (CSF) PDGF concentrations at the time of diagnosis may influence the clinical course of RR-MS. METHODS: At the time of diagnosis, we measured in 100 consecutive early MS patients the CSF concentrations of PDGF, of the main pro- and anti-inflammatory cytokines, and of reliable markers of neuronal damage. Clinical and radiological parameters of disease activity were prospectively collected during follow-up. RESULTS: CSF PDGF levels were positively correlated with prolonged relapse-free survival. Radiological markers of disease activity, biochemical markers of neuronal damage, and clinical parameters of disease progression were instead not influenced by PDGF concentrations. Higher CSF PDGF levels were associated with an anti-inflammatory milieu within the central nervous system. CONCLUSIONS: Our results suggest that PDGF could promote a more prolonged relapse-free period during the course of RR-MS, without influencing inflammation reactivation and inflammation-driven neuronal damage and likely enhancing adaptive plasticity.


Assuntos
Esclerose Múltipla/líquido cefalorraquidiano , Fator de Crescimento Derivado de Plaquetas/líquido cefalorraquidiano , Adulto , Citocinas/líquido cefalorraquidiano , Avaliação da Deficiência , Feminino , Seguimentos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Exame Neurológico , Estatísticas não Paramétricas , Adulto Jovem
9.
Mult Scler ; 24(7): 902-907, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28735565

RESUMO

BACKGROUND: Synaptic plasticity, the basic mechanism of clinical recovery after brain lesion, can also remarkably influence the clinical course of multiple sclerosis (MS). Physical rehabilitation represents the main treatment option to promote synaptic long-term potentiation (LTP) and to enhance spontaneous recovery of neurological deficits. OBJECTIVES: To overview the role of pharmacological treatment and physical rehabilitation in modulating LTP and enhancing clinical recovery in MS. RESULTS: Drug-induced LTP enhancement can be effectively used to promote functional recovery, alone or combined with rehabilitation. Also, as inflammatory cytokines alter synaptic transmission and plasticity in MS, pharmacological resolution of inflammation can positively influence clinical recovery. Finally, physical exercise could be an independent factor able to preserve or enhance LTP reserve both influencing signaling pathways involved in plasticity induction and maintenance, and decreasing inflammation. FUTURE DIRECTIONS: Better knowledge of LTP determinants may be useful to design specific strategies to promote recovery after a relapse and to reduce the progressive neurological deterioration in MS patients.


Assuntos
Terapia por Exercício/métodos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/reabilitação , Animais , Humanos , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia
10.
Cephalalgia ; 37(5): 418-422, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27154996

RESUMO

Background Many studies have shown that migraine patients have an interictal habituation deficit of visual evoked potentials (VEPs). Some discordant results were attributed to non-blinded analyses and a lack of repeatability. Aims In this study, we compared blinded and non-blinded analyses of the same recordings and assessed test-retest repeatability. Methods VEP recordings of 25 healthy volunteers (HVs) and 78 episodic migraine patients (EMs; 52 interictal, 26 ictal) were analysed by two investigators, one of whom was blinded to diagnosis and headache phase. Twelve HVs and nine EMs had two recordings for test repeatability. Results In both blinded and non-blinded analyses, VEP habituation was normal in HVs and EMs during an attack, but deficient in EMs interictally. Intra-individual habituation percentages were highly correlated in two recordings separated by ≥7 days. Conclusions The studies showing a VEP habituation deficit in migraineurs between attacks are unlikely to be biased by non-blinding analysis or poor repeatability.


Assuntos
Potenciais Evocados Visuais/fisiologia , Habituação Psicofisiológica/fisiologia , Transtornos de Enxaqueca/diagnóstico , Transtornos de Enxaqueca/fisiopatologia , Estimulação Luminosa/métodos , Adulto , Estudos de Casos e Controles , Eletroencefalografia/métodos , Eletroencefalografia/normas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Método Simples-Cego , Adulto Jovem
11.
Cephalalgia ; 36(3): 258-64, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26054364

RESUMO

INTRODUCTION: In migraine most studies report an interictal deficit of habituation of visual-evoked potentials (VEP-hab) and reduced thresholds for phosphene induction (PT) by transcranial magnetic stimulation (TMS). We searched for a possible correlation between VEP-hab and PT in migraine patients and healthy controls to test whether they reflect the same pathophysiological abnormality. METHODS: We assessed PT and VEP-hab measured as the percentage change of N1/P1 amplitude over six blocks of 100 responses in 15 healthy volunteers (HV) and in 13 episodic migraineurs without aura (MO) between attacks. Results were compared using Mann-Whitney U test. Interrelationships were examined using Spearman's correlation. RESULTS: In MO patients VEP-hab was reduced compared to HV (p = 0.001), while PT were not significantly different between HV and MO. There was no correlation between PT and VEP-hab in either group of participants. CONCLUSIONS: We confirm that in interictal migraine VEP habituation is deficient, but magnetophosphene threshold normal. VEP-hab and PT were not correlated with each other in healthy controls or in migraineurs. This finding suggests that they index different facets of cortical excitability in migraine, i.e. a punctual normal measure of the cortical activation threshold for PT and a dynamic response pattern to repeated stimuli for VEP habituation.


Assuntos
Potenciais Evocados Visuais/fisiologia , Habituação Psicofisiológica/fisiologia , Transtornos de Enxaqueca/fisiopatologia , Fosfenos/fisiologia , Estimulação Magnética Transcraniana , Adolescente , Adulto , Estudos de Casos e Controles , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Adulto Jovem
12.
BMJ Open ; 14(6): e085484, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950995

RESUMO

INTRODUCTION: Poststroke spasticity (PSS) affects up to 40% of patients who had a stroke. Botulinum neurotoxin type A (BoNT-A) has been shown to improve spasticity, but the optimal timing of its application remains unclear. While several predictors of upper limb PSS are known, their utility in clinical practice in relation to BoNT-A treatment has yet to be fully elucidated. The COLOSSEO-BoNT study aims to investigate predictors of PSS and the effects of BoNT-A timing on spasticity-related metrics in a real-world setting. METHODS AND ANALYSIS: The recruitment will involve approximately 960 patients who have recently experienced an ischaemic stroke (within 10 days, V0) and will follow them up for 24 months. Parameters will be gathered at specific intervals: (V1) 4, (V2) 8, (V3) 12, (V4) 18 months and (V5) 24 months following enrolment. Patients will be monitored throughout their rehabilitation and outpatient clinic journeys and will be compared based on their BoNT-A treatment status-distinguishing between patients receiving treatment at different timings and those who undergo rehabilitation without treatment. Potential predictors will encompass the Fugl-Meyer assessment, the National Institute of Health Stroke Scale (NIHSS), stroke radiological characteristics, performance status, therapies and access to patient care pathways. Outcomes will evaluate muscle stiffness using the modified Ashworth scale and passive range of motion, along with measures of quality of life, pain, and functionality. ETHICS AND DISSEMINATION: This study underwent review and approval by the Ethics Committee of the Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy. Regardless of the outcome, the findings will be disseminated through publication in peer-reviewed journals and presentations at national and international conferences. TRIAL REGISTRATION NUMBER: NCT05379413.


Assuntos
Toxinas Botulínicas Tipo A , Espasticidade Muscular , Fármacos Neuromusculares , Acidente Vascular Cerebral , Extremidade Superior , Humanos , Espasticidade Muscular/tratamento farmacológico , Espasticidade Muscular/etiologia , Toxinas Botulínicas Tipo A/uso terapêutico , Toxinas Botulínicas Tipo A/administração & dosagem , Estudos Prospectivos , Fármacos Neuromusculares/uso terapêutico , Fármacos Neuromusculares/administração & dosagem , Extremidade Superior/fisiopatologia , Estudos Longitudinais , Acidente Vascular Cerebral/complicações , Reabilitação do Acidente Vascular Cerebral/métodos , Estudos Observacionais como Assunto , Feminino , Masculino
13.
Biomedicines ; 11(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672686

RESUMO

BACKGROUND: Osteopontin, an extracellular matrix protein involved in bone remodeling, tissue repair and inflammation, has previously been associated with increased inflammation and neurodegeneration in multiple sclerosis (MS), promoting a worse disease course. Osteopontin is also likely involved in acute MS relapses. METHODS: In 47 patients with relapsing-remitting MS, we explored the correlation between the time elapsed between the last clinical relapse and lumbar puncture, and the cerebrospinal fluid (CSF) levels of osteopontin and a group of inflammatory cytokines and adipokines such as resistin, plasminogen activator inhibitor-1, osteoprotegerin, interleukin (IL)-1ß, IL-2, IL-6 and IL-1 receptor antagonist (IL-1ra). We also analyzed the correlations between CSF levels of osteopontin and the other CSF molecules considered. RESULTS: Osteopontin CSF concentrations were higher in patients with a shorter time interval between the last clinical relapse and CSF withdrawal. In addition, CSF levels of osteopontin were positively correlated with the proinflammatory cytokines IL-2 and IL-6 and negatively correlated with the anti-inflammatory molecule IL-1ra. CONCLUSIONS: Our results further suggest the role of osteopontin in acute MS relapses showing that, in proximity to relapses, osteopontin expression in CSF may be increased along with other proinflammatory mediators and correlated with decreased concentrations of anti-inflammatory molecules.

14.
Mult Scler Relat Disord ; 71: 104528, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36709576

RESUMO

Neurodegenerative and inflammatory processes influence the clinical course of multiple sclerosis (MS). The ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) has been associated with cognitive dysfunction, amyloid deposition and neuroinflammation in Alzheimer's disease. We explored in a group of 50 patients with relapsing-remitting MS the association between the cerebrospinal fluid (CSF) levels of BACE1, clinical characteristics at the time of diagnosis and prospective disability after three-years follow-up. In addition, we assessed the correlations between the CSF levels of BACE 1, amyloid ß (Aß) 1-40 and 1-42, phosphorylated tau (pTau), lactate, and a set of inflammatory and anti-inflammatory molecules. BACE1 CSF levels were correlated positively with depression as measured with Beck Depression Inventory-Second Edition scale, and negatively with visuospatial memory performance evaluated by the Brief Visuospatial Memory Test-Revised. In addition, BACE CSF levels were positively correlated with Bayesian Risk Estimate for MS at onset, and with Expanded Disability Status Scale score assessed three years after diagnosis. Furthermore, a positive correlation was found between BACE1, amyloid ß 42/40 ratio (Spearman's r = 0.334, p = 0.018, n = 50), pTau (Spearman's r = 0.304, p = 0.032, n = 50) and lactate concentrations (Spearman's r = 0.361, p = 0.01, n = 50). Finally, an association emerged between BACE1 CSF levels and a group of pro and anti-inflammatory molecules, including interleukin (IL)-4, IL-17, IL-13, IL-9 and interferon-γ. BACE1 may have a role in different key mechanisms such as neurodegeneration, oxidative stress and inflammation, influencing mood, cognitive disorders and disability progression in MS.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/complicações , Secretases da Proteína Precursora do Amiloide , Teorema de Bayes , Estudos Prospectivos , Ácido Aspártico Endopeptidases , Inflamação
15.
Handb Clin Neurol ; 184: 457-470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034754

RESUMO

In recent years, experimental studies have clarified that immune system influences the functioning of the central nervous system (CNS) in both physiologic and pathologic conditions. The neuro-immune crosstalk plays a crucial role in neuronal development and may be critically involved in mediating CNS response to neuronal damage. Multiple sclerosis (MS) represents a good model to investigate how the immune system regulates neuronal activity. Accordingly, a growing body of evidence has demonstrated that increased levels of pro-inflammatory mediators may significantly impact synaptic mechanisms, influencing overall neuronal excitability and synaptic plasticity expression. In this chapter, we provide an overview of preclinical data and clinical studies exploring synaptic functioning noninvasively with transcranial magnetic stimulation (TMS) in patients with MS. Moreover, we examine how inflammation-driven synaptic dysfunction could affect synaptic plasticity expression, negatively influencing the MS course. Contrasting CSF inflammation together with pharmacologic enhancement of synaptic plasticity and application of noninvasive brain stimulation, alone or in combination with rehabilitative treatments, could improve the clinical compensation and prevent the accumulating deterioration in MS.


Assuntos
Esclerose Múltipla , Autoimunidade , Humanos , Inflamação , Plasticidade Neuronal , Estimulação Magnética Transcraniana
16.
Biomolecules ; 12(2)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35204724

RESUMO

Background: Astrocytes and microglia play an important role in the inflammatory process of multiple sclerosis (MS). We investigated the associations between the cerebrospinal fluid (CSF) levels of glial fibrillary acid protein (GFAP) and soluble triggering receptors expressed on myeloid cells-2 (sTREM-2), inflammatory molecules, and clinical characteristics in a group of patients with relapsing-remitting MS (RRMS). Methods: Fifty-one RRMS patients participated in the study. Clinical evaluation and CSF collection were performed at the time of diagnosis. The CSF levels of GFAP, sTREM-2, and of a large set of inflammatory and anti-inflammatory molecules were determined. MRI structural measures (cortical thickness, T2 lesion load, cerebellar volume) were examined. Results: The CSF levels of GFAP and sTREM-2 showed significant correlations with inflammatory cytokines IL-8, G-CSF, and IL-5. Both GFAP and sTREM-2 CSF levels positively correlated with age at diagnosis. GFAP was also higher in male MS patients, and was associated with an increased risk of MS progression, as evidenced by higher BREMS at the onset. Finally, a negative association was found between GFAP CSF levels and cerebellar volume in RRMS at diagnosis. Conclusions: GFAP and sTREM-2 represent suitable biomarkers of central inflammation in MS. Our results suggest that enhanced CSF expression of GFAP may characterize patients with a higher risk of progression.


Assuntos
Proteína Glial Fibrilar Ácida , Glicoproteínas de Membrana , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Receptores Imunológicos , Biomarcadores/líquido cefalorraquidiano , Proteína Glial Fibrilar Ácida/líquido cefalorraquidiano , Humanos , Masculino , Glicoproteínas de Membrana/líquido cefalorraquidiano , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Doenças Neuroinflamatórias/líquido cefalorraquidiano
17.
Genes (Basel) ; 13(2)2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35205376

RESUMO

The clinical course of multiple sclerosis (MS) is critically influenced by the interplay between inflammatory and neurodegenerative processes. The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265), one of the most studied single-nucleotide polymorphisms (SNPs), influences brain functioning and neurodegenerative processes in healthy individuals and in several neuropsychiatric diseases. However, the role of this polymorphism in MS is still controversial. In 218 relapsing-remitting (RR)-MS patients, we explored, at the time of diagnosis, the associations between the Val66Met polymorphism, clinical characteristics, and the cerebrospinal fluid (CSF) levels of a large set of pro-inflammatory and anti-inflammatory molecules. In addition, associations between Val66Met and structural MRI measures were assessed. We identified an association between the presence of Met and a combination of cytokines, identified by principal component analysis (PCA), including the pro-inflammatory molecules MCP-1, IL-8, TNF, Eotaxin, and MIP-1b. No significant associations emerged with clinical characteristics. Analysis of MRI measures evidenced reduced cortical thickness at the time of diagnosis in patients with Val66Met. We report for the first time an association between the Val66Met polymorphism and central inflammation in MS patients at the time of diagnosis. The role of this polymorphism in both inflammatory and neurodegenerative processes may explain its complex influence on the MS course.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Esclerose Múltipla , Fator Neurotrófico Derivado do Encéfalo/genética , Humanos , Inflamação/genética , Imageamento por Ressonância Magnética , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único
18.
Biomedicines ; 10(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36140159

RESUMO

In multiple sclerosis (MS), fatigue is a frequent symptom that negatively affects quality of life. The pathogenesis of fatigue is multifactorial and inflammation may play a specific role. To explore the association between fatigue, central inflammation and disease course in MS in 106 relapsing-remitting (RR)-MS patients, clinical characteristics, including fatigue and mood, were explored at the time of diagnosis. NEDA (no evidence of disease activity)-3 status after one-year follow up was calculated. Cerebrospinal fluid (CSF) levels of a set of proinflammatory and anti-inflammatory molecules and peripheral blood markers of inflammation were also analyzed. MRI structural measures were explored in 35 patients. A significant negative correlation was found at diagnosis between fatigue measured with the Modified Fatigue Impact Scale (MFIS) and the CSF levels of interleukin (IL)-10. Conversely, no significant associations were found with peripheral markers of inflammation. Higher MFIS scores were associated with reduced probability to reach NEDA-3 status after 1-year follow up. Finally, T2 lesion load showed a positive correlation with MFIS scores and a negative correlation with CSF IL-10 levels at diagnosis. CSF inflammation, and particularly the reduced expression of the anti-inflammatory molecule IL-10, may exacerbate fatigue. Fatigue in MS may reflect subclinical CSF inflammation, predisposing to greater disease activity.

19.
Genes (Basel) ; 13(5)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35627281

RESUMO

(1) Background: The clinical course of multiple sclerosis (MS) is critically influenced by the expression of different pro-inflammatory and anti-inflammatory cytokines. Interleukin 6 (IL-6) represents a major inflammatory molecule previously associated with exacerbated disease activity in relapsing remitting MS (RR-MS); however, the role of single-nucleotide polymorphisms (SNPs) in the IL-6 gene has not been fully elucidated in MS. (2) Methods: We explored in a cohort of 171 RR-MS patients, at the time of diagnosis, the associations between four IL-6 SNPs (rs1818879, rs1554606, rs1800797, and rs1474347), CSF inflammation, and clinical presentation. (3) Results: Using principal component analysis and logistic regression analysis we identified an association between rs1818879, radiological activity, and a set of cytokines, including the IL-1ß, IL-9, IL-10, and IL-13. No significant associations were found between other SNPs and clinical or inflammatory parameters. (4) Conclusions: The association between the rs1818879 polymorphism and subclinical neuroinflammatory activity suggests that interindividual differences in the IL-6 gene might influence the immune activation profile in MS.


Assuntos
Interleucina-6/genética , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Citocinas/genética , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/genética , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/genética , Polimorfismo de Nucleotídeo Único
20.
Eur J Neurosci ; 33(10): 1908-15, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21488986

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) over primary motor cortex (M1) elicits changes in motor evoked potential (MEP) size thought to reflect short- and long-term forms of synaptic plasticity, resembling short-term potentiation (STP) and long-term potentiation/depression (LTP/LTD) observed in animal experiments. We designed this study in healthy humans to investigate whether STP as elicited by 5-Hz rTMS interferes with LTP/LTD-like plasticity induced by intermittent and continuous theta-burst stimulation (iTBS and cTBS). The effects induced by 5-Hz rTMS and iTBS/cTBS were indexed as changes in MEP size. We separately evaluated changes induced by 5-Hz rTMS, iTBS and cTBS applied alone and those induced by iTBS and cTBS delivered after priming 5-Hz rTMS. Interactions between 5-Hz rTMS and iTBS/cTBS were investigated under several experimental conditions by delivering 5-Hz rTMS at suprathreshold and subthreshold intensity, allowing 1 and 5 min intervals to elapse between 5-Hz rTMS and TBS, and delivering one and ten 5-Hz rTMS trains. We also investigated whether 5-Hz rTMS induces changes in intracortical excitability tested with paired-pulse transcranial magnetic stimulation. When given alone, 5-Hz rTMS induced short-lasting and iTBS/cTBS induced long-lasting changes in MEP amplitudes. When M1 was primed with 10 suprathreshold 5-Hz rTMS trains at 1 min before iTBS or cTBS, the iTBS/cTBS-induced after-effects disappeared. The 5-Hz rTMS left intracortical excitability unchanged. We suggest that STP elicited by suprathreshold 5-Hz rTMS abolishes iTBS/cTBS-induced LTP/LTD-like plasticity through non-homeostatic metaplasticity mechanisms. Our study provides new information on interactions between short-term and long-term rTMS-induced plasticity in human M1.


Assuntos
Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Adulto , Animais , Feminino , Humanos , Masculino , Distribuição Aleatória , Estimulação Magnética Transcraniana/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA