Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Plant Physiol ; 193(1): 234-245, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37177986

RESUMO

The identification of chemical compounds that affect intracellular processes has greatly contributed to our understanding of plant growth and development. In most cases, these compounds have been identified in germinated seedlings. However, chemical screening using mature plants would benefit and advance our understanding of environmental responses. In this study, we developed a high-throughput screening method using single leaves of mature plants to identify small molecules that affect cold-regulated gene expression. A single excised leaf of Arabidopsis (Arabidopsis thaliana) grown in submerged cultures responded to low temperatures in terms of COLD-REGULATED (COR) gene expression. We used transgenic Arabidopsis harboring a COLD-REGULATED 15A (COR15A) promoter::luciferase (COR15Apro::LUC) construct to screen natural compounds that affect the cold induction of COR15Apro::LUC. This approach allowed us to identify derivatives of 1,4-naphthoquinone as specific inhibitors of COR gene expression. Moreover, 1,4-naphthoquinones appeared to inhibit the rapid induction of upstream C-REPEAT BINDING FACTOR (CBF) transcription factors upon exposure to low temperature, suggesting that 1,4-naphthoquinones alter upstream signaling processes. Our study offers a chemical screening scheme for identifying compounds that affect environmental responses in mature plants. This type of analysis is likely to reveal an unprecedented link between certain compounds and plant environmental responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Baixa , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Folhas de Planta/metabolismo
2.
Plant Cell ; 33(7): 2479-2505, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34235544

RESUMO

The inner-envelope K+ EFFLUX ANTIPORTERS (KEA) 1 and 2 are critical for chloroplast development, ion homeostasis, and photosynthesis. However, the mechanisms by which changes in ion flux across the envelope affect organelle biogenesis remained elusive. Chloroplast development requires intricate coordination between the nuclear genome and the plastome. Many mutants compromised in plastid gene expression (PGE) display a virescent phenotype, that is delayed greening. The phenotypic appearance of Arabidopsis thaliana kea1 kea2 double mutants fulfills this criterion, yet a link to PGE has not been explored. Here, we show that a simultaneous loss of KEA1 and KEA2 results in maturation defects of the plastid ribosomal RNAs. This may be caused by secondary structure changes of rRNA transcripts and concomitant reduced binding of RNA-processing proteins, which we documented in the presence of skewed ion homeostasis in kea1 kea2. Consequently, protein synthesis and steady-state levels of plastome-encoded proteins remain low in mutants. Disturbance in PGE and other signs of plastid malfunction activate GENOMES UNCOUPLED 1-dependent retrograde signaling in kea1 kea2, resulting in a dramatic downregulation of GOLDEN2-LIKE transcription factors to halt expression of photosynthesis-associated nuclear-encoded genes (PhANGs). PhANG suppression delays the development of fully photosynthesizing kea1 kea2 chloroplasts, probably to avoid progressing photo-oxidative damage. Overall, our results reveal that KEA1/KEA2 function impacts plastid development via effects on RNA-metabolism and PGE.


Assuntos
Proteínas de Arabidopsis/metabolismo , Antiportadores de Potássio-Hidrogênio/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Transdução de Sinais/fisiologia
3.
Physiol Plant ; 176(4): e14409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38973450

RESUMO

Plants have evolved various mechanisms to adapt to the ever-changing external environment. Autophagy is one such mechanism and has been suggested to play a key role in responding to and adapting to abiotic stresses in plants. However, the role of autophagy in adaptation to cold and freezing stresses remains to be characterized in detail. Here, we investigated the role of autophagy in the low-temperature response of Arabidopsis using atg mutants. Both the atg5-1 and atg10-1 mutants exhibited normal freezing tolerance, regardless of cold acclimation. A comparison of fresh weights indicated that the difference in growth between the wild-type and atg plants under cold conditions was rather small compared with that under normal conditions. Analysis of COLD-REGULATED gene expression showed no significant differences between the atg mutants and wild type. Treatment with 3-methyladenine, an inhibitor of autophagy, did not impair the induction of COR15Apro::LUC expression upon exposure to low temperature. Evaluation of autophagic activity using transgenic plants expressing RBCS-mRFP demonstrated that autophagy was rarely induced by cold exposure, even in the dark. Taken together, these data suggest that autophagy is suppressed by low temperatures and is dispensable for cold acclimation and freezing tolerance in Arabidopsis.


Assuntos
Aclimatação , Proteínas de Arabidopsis , Arabidopsis , Autofagia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Arabidopsis/genética , Arabidopsis/fisiologia , Autofagia/genética , Autofagia/fisiologia , Aclimatação/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Congelamento , Mutação , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo
4.
Physiol Plant ; 175(4): e13957, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37338180

RESUMO

In floral thermogenesis, sugars play an important role not only as energy providers but also as growth and development facilitators. Yet, the mechanisms underlying sugar translocation and transport in thermogenic plants remain to be studied. Asian skunk cabbage (Symplocarpus renifolius) is a species that can produce durable and intense heat in its reproductive organ, the spadix. Significant morphological and developmental changes in the stamen are well-characterized in this plant. In this study, we focused on the sugar transporters (STPs), SrSTP1 and SrSTP14, whose genes were identified by RNA-seq as the upregulated STPs during thermogenesis. Real-time PCR confirmed that mRNA expression of both STP genes was increased from the pre-thermogenic to the thermogenic stage in the spadix, where it is predominantly expressed in the stamen. SrSTP1 and SrSTP14 complemented the growth defects of a hexose transporter-deficient yeast strain, EBY4000, on media containing 0.02, 0.2, and 2% (w/v) glucose and galactose. Using a recently developed transient expression system in skunk cabbage leaf protoplasts, we revealed that SrSTP1 and SrSTP14-GFP fusion proteins were mainly localized to the plasma membrane. To dig further into the functional analysis of SrSTPs, tissue-specific localization of SrSTPs was investigated by in situ hybridization. Using probes for SrSTP14, mRNA expression was observed in the microspores within the developing anther at the thermogenic female stage. These results indicate that SrSTP1 and SrSTP14 transport hexoses (e.g., glucose and galactose) at the plasma membrane and suggest that SrSTP14 may play a role in pollen development through the uptake of hexoses into pollen precursor cells.


Assuntos
Araceae , Galactose/metabolismo , Pólen/genética , Pólen/metabolismo , Glucose/metabolismo , Termogênese , RNA Mensageiro/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Plant Cell Rep ; 41(1): 263-275, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34704119

RESUMO

KEY MESSAGE: Floral thermogenesis is an important reproductive strategy for attracting pollinators. We developed essential biological tools for studying floral thermogenesis using two species of thermogenic aroids, Symplocarpus renifolius and Alocasia odora. Aroids contain many species with intense heat-producing abilities in their inflorescences. Several genes have been proposed to be involved in thermogenesis of these species, but biological tools for gene functional analyses are lacking. In this study, we aimed to develop a protoplast-based transient expression (PTE) system for the study of thermogenic aroids. Initially, we focused on skunk cabbage (Symplocarpus renifolius) because of its ability to produce intense as well as durable heat. In this plant, leaf protoplasts were isolated from potted and shoot tip-cultured plants with high efficiency (ca. 1.0 × 105/g fresh weight), and more than half of these protoplasts were successfully transfected. Using this PTE system, we determined the protein localization of three mitochondrial energy-dissipating proteins, SrAOX, SrUCPA, and SrNDA1, fused to green fluorescent protein (GFP). These three GFP-fused proteins were localized in MitoTracker-stained mitochondria in leaf protoplasts, although the green fluorescent particles in protoplasts expressing SrUCPA-GFP were significantly enlarged. Finally, to assess whether the PTE system established in the leaves of S. renifolius is applicable for floral tissues of thermogenic aroids, inflorescences of S. renifolius and another thermogenic aroid (Alocasia odora) were used. Although protoplasts were successfully isolated from several tissues of the inflorescences, PTE systems worked well only for the protoplasts isolated from the female parts (slightly thermogenic or nonthermogenic) of A. odora inflorescences. Our developed system has a potential to be widely used in inflorescences as well as leaves in thermogenic aroids and therefore may be a useful biological tool for investigating floral thermogenesis.


Assuntos
Alocasia/fisiologia , Araceae/fisiologia , Botânica/métodos , Flores/fisiologia , Protoplastos/metabolismo , Termogênese
6.
Plant Cell Physiol ; 62(11): 1728-1744, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34410430

RESUMO

Plastids are involved in phytohormone metabolism as well as photosynthesis. However, the mechanism by which plastid retrograde signals and phytohormones cooperatively regulate plastid biogenesis remains elusive. Here, we investigated the effects of an inhibitor and a mutation that generate biogenic plastid signals on phytohormones and vice versa. Inhibition of plastid biogenesis by norflurazon (NF) treatment and the plastid protein import2 (ppi2) mutation caused a decrease in salicylic acid (SA) and jasmonic acid (JA). This effect can be attributed in part to the altered expression of genes involved in the biosynthesis and the metabolism of SA and JA. However, SA-dependent induction of the PATHOGENESIS-RELATED1 gene was virtually unaffected in NF-treated plants and the ppi2 mutant. Instead, the level of chlorophyll in these plants was partially restored by the exogenous application of SA. Consistent with this observation, the levels of some photosynthesis-associated proteins increased in the ppi2 and NF-treated plants in response to SA treatment. This regulation in true leaves seems to occur at the posttranscriptional level since SA treatment did not induce the expression of photosynthesis-associated genes. In salicylic acid induction deficient 2 and lesions simulating disease resistance 1 mutants, endogenous SA regulates the accumulation of photosynthesis-associated proteins through transcriptional and posttranscriptional mechanisms. These data indicate that SA acts antagonistically to the inhibition of plastid biogenesis by promoting the accumulation of photosynthesis-associated proteins in Arabidopsis, suggesting a possible link between SA and biogenic plastid signaling.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ciclopentanos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Herbicidas/efeitos adversos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fotossíntese , Plastídeos/metabolismo , Piridazinas/efeitos adversos , Transdução de Sinais
7.
Plant Physiol ; 180(2): 743-756, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30918084

RESUMO

Cone thermogenesis is a widespread phenomenon in cycads and may function to promote volatile emissions that affect pollinator behavior. Given their large population size and intense and durable heat-producing effects, cycads are important organisms for comprehensive studies of plant thermogenesis. However, knowledge of mitochondrial morphology and function in cone thermogenesis is limited. Therefore, we investigated these mitochondrial properties in the thermogenic cycad species Cycas revoluta Male cones generated heat even in cool weather conditions. Female cones produced heat, but to a lesser extent than male cones. Ultrastructural analyses of the two major tissues of male cones, microsporophylls and microsporangia, revealed the existence of a population of mitochondria with a distinct morphology in the microsporophylls. In these cells, we observed large mitochondria (cross-sectional area of 2 µm2 or more) with a uniform matrix density that occupied >10% of the total mitochondrial volume. Despite the size difference, many nonlarge mitochondria (cross-sectional area <2 µm2) also exhibited a shape and a matrix density similar to those of large mitochondria. Alternative oxidase (AOX) capacity and expression levels in microsporophylls were much higher than those in microsporangia. The AOX genes expressed in male cones revealed two different AOX complementary DNA sequences: CrAOX1 and CrAOX2 The expression level of CrAOX1 mRNA in the microsporophylls was 100 times greater than that of CrAOX2 mRNA. Collectively, these results suggest that distinctive mitochondrial morphology and CrAOX1-mediated respiration in microsporophylls might play a role in cycad cone thermogenesis.


Assuntos
Cycadopsida/enzimologia , Cycadopsida/fisiologia , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Pólen/enzimologia , Termogênese , Respiração Celular , Cycadopsida/genética , Cycadopsida/ultraestrutura , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Especificidade de Órgãos/genética , Pólen/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Temperatura
9.
Plant Physiol ; 173(1): 524-535, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27821720

RESUMO

Arabidopsis (Arabidopsis thaliana) GOLDEN2-LIKE (GLK) transcription factors promote chloroplast biogenesis by regulating the expression of photosynthesis-related genes. Arabidopsis GLK1 is also known to participate in retrograde signaling from chloroplasts to the nucleus. To elucidate the mechanism by which GLK1 is regulated in response to plastid signals, we biochemically characterized Arabidopsis GLK1 protein. Expression analysis of GLK1 protein indicated that GLK1 accumulates in aerial tissues. Both tissue-specific and Suc-dependent accumulation of GLK1 were regulated primarily at the transcriptional level. In contrast, norflurazon- or lincomycin-treated gun1-101 mutant expressing normal levels of GLK1 mRNA failed to accumulate GLK1 protein, suggesting that plastid signals directly regulate the accumulation of GLK1 protein in a GUN1-independent manner. Treatment of the glk1glk2 mutant expressing functional GFP-GLK1 with a proteasome inhibitor, MG-132, induced the accumulation of polyubiquitinated GFP-GLK1. Furthermore, the level of endogenous GLK1 in plants with damaged plastids was partially restored when those plants were treated with MG-132. Collectively, these data indicate that the ubiquitin-proteasome system participates in the degradation of Arabidopsis GLK1 in response to plastid signals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plastídeos/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Leupeptinas/farmacologia , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Fatores de Transcrição/genética
10.
J Exp Bot ; 65(18): 5257-65, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25013120

RESUMO

The inner envelope membrane (IEM) of the chloroplast plays crucial roles in forming an osmotic barrier and controlling metabolite exchange between the organelle and the cytosol. The IEM therefore harbours a number of membrane proteins and requires the import and integration of these nuclear-encoded proteins for its biogenesis. Recent studies have demonstrated that the transmembrane segment of single-spanning IEM proteins plays key roles in determining their IEM localization. However, few studies have focused on the molecular mechanisms by which polytopic membrane proteins are targeted to the IEM. In this study, we investigated the targeting mechanism of polytopic IEM proteins using the protein Cor413im1 as a model substrate. Cor413im1 does not utilize a soluble intermediate for its targeting to the IEM. Furthermore, we show that the putative fifth transmembrane segment of Cor413im1 is necessary for its targeting to the IEM. The C-terminal portion containing this transmembrane segment is also able to deliver Cor413im1 protein to the IEM. However, the fifth transmembrane segment of Cor413im1 itself is insufficient to target a fusion protein to the IEM. These data suggest that the targeting of polytopic membrane proteins to the chloroplast IEM in vivo involves multiple transmembrane segments and that chloroplasts have evolved a unique mechanism for the integration of polytopic proteins to the IEM.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia
11.
Nat Commun ; 15(1): 370, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191552

RESUMO

Chloroplast development adapts to the environment for performing suitable photosynthesis. Brassinosteroids (BRs), plant steroid hormones, have crucial effects on not only plant growth but also chloroplast development. However, the detailed molecular mechanisms of BR signaling in chloroplast development remain unclear. Here, we identify a regulator of chloroplast development, BPG4, involved in light and BR signaling. BPG4 interacts with GOLDEN2-LIKE (GLK) transcription factors that promote the expression of photosynthesis-associated nuclear genes (PhANGs), and suppresses their activities, thereby causing a decrease in the amounts of chlorophylls and the size of light-harvesting complexes. BPG4 expression is induced by BR deficiency and light, and is regulated by the circadian rhythm. BPG4 deficiency causes increased reactive oxygen species (ROS) generation and damage to photosynthetic activity under excessive high-light conditions. Our findings suggest that BPG4 acts as a chloroplast homeostasis factor by fine-tuning the expression of PhANGs, optimizing chloroplast development, and avoiding ROS generation.


Assuntos
Brassinosteroides , Cloroplastos , Espécies Reativas de Oxigênio , Reguladores de Crescimento de Plantas , Homeostase , Fatores de Transcrição/genética
12.
Plant Cell ; 22(6): 1762-76, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20562236

RESUMO

In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis and lateral root cap; however, this carrier is localized toward the root tip (rootward) in cortical cells of the meristem, a deployment whose function is enigmatic. We use pharmacological and genetic tools to cause a shootward relocation of PIN2 in meristematic cortical cells without detectably altering PIN2 polarization in other cell types or PIN1 polarization. This relocation of cortical PIN2 was negatively regulated by the membrane trafficking factor GNOM and by the regulatory A1 subunit of type 2-A protein phosphatase (PP2AA1) but did not require the PINOID protein kinase. When GNOM was inhibited, PINOID abundance increased and PP2AA1 was partially immobilized, indicating both proteins are subject to GNOM-dependent regulation. Shootward PIN2 specifically in the cortex was accompanied by enhanced shootward polar auxin transport and by diminished gravitropism. These results demonstrate that auxin flow in the root cortex is important for optimal gravitropic response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Gravitropismo , Meristema/fisiologia , Raízes de Plantas/fisiologia , Proteína Fosfatase 2/metabolismo , Transporte Biológico , Brefeldina A/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ácidos Indolacéticos/metabolismo
13.
Plant Cell Environ ; 35(3): 554-66, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21955303

RESUMO

Floral thermogenesis has been described in several plant species. Because of the lack of comprehensive gene expression profiles in thermogenic plants, the molecular mechanisms by which floral thermogenesis is regulated remain to be established. We examined the gene expression landscape of skunk cabbage (Symplocarpus renifolius) during thermogenic and post-thermogenic stages and identified expressed sequence tags from different developmental stages of the inflorescences using super serial analysis of gene expression (SuperSAGE). In-depth analysis suggested that cellular respiration and mitochondrial functions are significantly enhanced during the thermogenic stage. In contrast, genes involved in stress responses and protein degradation were significantly up-regulated during post-thermogenic stages. Quantitative comparisons indicated that the expression levels of genes involved in cellular respiration were higher in thermogenic spadices than in Arabidopsis inflorescences. Thermogenesis-associated genes seemed to be expressed abundantly in the peripheral tissues of the spadix. Our results suggest that cellular respiration and mitochondrial metabolism play key roles in heat production during floral thermogenesis. On the other hand, vacuolar cysteine protease and other degradative enzymes seem to accelerate senescence and terminate thermogenesis in the post-thermogenic stage.


Assuntos
Araceae/genética , Flores/fisiologia , Mitocôndrias/metabolismo , Temperatura , Vacúolos/metabolismo , Araceae/fisiologia , Respiração Celular , Análise por Conglomerados , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , RNA de Plantas/genética , Transcriptoma
14.
J Exp Bot ; 63(1): 251-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21926093

RESUMO

Retrograde signalling from the plastid to the nucleus, also known as plastid signalling, plays a key role in coordinating nuclear gene expression with the functional state of plastids. Inhibitors that cause plastid dysfunction have been suggested to generate specific plastid signals related to their modes of action. However, the molecules involved in plastid signalling remain to be identified. Genetic studies indicate that the plastid-localized pentatricopeptide repeat protein GUN1 mediates signalling under several plastid signalling-related conditions. To elucidate further the nature of plastid signals, investigations were carried out to determine whether different plastid signal-inducing treatments had similar effects on plastids and on nuclear gene expression. It is demonstrated that norflurazon and lincomycin treatments and the plastid protein import2-2 (ppi2-2) mutation, which causes a defect in plastid protein import, all resulted in similar changes at the gene expression level. Furthermore, it was observed that these three treatments resulted in defective RNA editing in plastids. This defect in RNA editing was not a secondary effect of down-regulation of pentatricopeptide repeat protein gene expression in the nucleus. The results indicate that these three treatments, which are known to induce plastid signals, affect RNA editing in plastids, suggesting an unprecedented link between plastid signalling and RNA editing.


Assuntos
Plastídeos , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes de Plantas , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Transcrição Gênica
15.
Biosci Biotechnol Biochem ; 76(10): 1990-2, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23047088

RESUMO

Skunk cabbage (Symplocarpus renifolius) spadices contain abundant transcripts for cysteine protease (CP). From thermogenic spadices, we isolated SrCPA, a highly expressed CP gene that encoded a papain-type CP. SrCPA is structurally similar to other plant CPs, including the senescence-associated CPs found in aroids. The expression of SrCPA increased during floral development, and was observed in all floral tissues except for the stamens.


Assuntos
Araceae/enzimologia , Araceae/genética , Regulação da Expressão Gênica de Plantas , Papaína/genética , Sequência de Aminoácidos , Araceae/crescimento & desenvolvimento , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Dados de Sequência Molecular , Papaína/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Plant Cell Physiol ; 51(11): 1847-53, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20889507

RESUMO

Plastids, found in plants and some parasites, are of endosymbiotic origin. The best-characterized plastid is the plant cell chloroplast. Plastids provide essential metabolic and signaling functions, such as the photosynthetic process in chloroplasts. However, the role of plastids is not limited to production of metabolites. Plastids affect numerous aspects of plant growth and development through biogenesis, varying functional states and metabolic activities. Examples include, but are not limited to, embryogenesis, leaf development, gravitropism, temperature response and plant-microbe interactions. In this review, we summarize the versatile roles of plastids in plant growth and development.


Assuntos
Desenvolvimento Vegetal , Plastídeos , Fotossíntese , Plantas/embriologia , Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Transdução de Sinais
17.
Plant Physiol ; 151(3): 1339-53, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19726569

RESUMO

Expression of nuclear-encoded plastid proteins and import of those proteins into plastids are indispensable for plastid biogenesis. One possible cellular mechanism that coordinates these two essential processes is retrograde signaling from plastids to the nucleus. However, the molecular details of how this signaling occurs remain elusive. Using the plastid protein import2 mutant of Arabidopsis (Arabidopsis thaliana), which lacks the atToc159 protein import receptor, we demonstrate that the expression of photosynthesis-related nuclear genes is tightly coordinated with their import into plastids. Down-regulation of photosynthesis-related nuclear genes is also observed in mutants lacking other components of the plastid protein import apparatus. Genetic studies indicate that the coordination of plastid protein import and nuclear gene expression is independent of proposed plastid signaling pathways such as the accumulation of Mg-protoporphyrin IX and the activity of ABA INSENSITIVE4 (ABI4). Instead, it may involve GUN1 and the transcription factor AtGLK. The expression level of AtGLK1 is tightly correlated with the expression of photosynthesis-related nuclear genes in mutants defective in plastid protein import. Furthermore, the activity of GUN1 appears to down-regulate the expression of AtGLK1 when plastids are dysfunctional. Based on these data, we suggest that defects in plastid protein import generate a signal that represses photosynthesis-related nuclear genes through repression of AtGLK1 expression but not through activation of ABI4.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Núcleo Celular/metabolismo , Plastídeos/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fotossíntese , Plastídeos/genética , Protoporfirinas/metabolismo , RNA de Plantas/genética , Fatores de Transcrição/genética
18.
Biosci Biotechnol Biochem ; 74(3): 471-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20208345

RESUMO

Plastids are a diverse group of organelles found in plants and some parasites. Chloroplasts are the archetypical plastids and are present in photosynthetic plant cells. Because most plastid proteins are encoded by the nuclear genome, plastid biogenesis relies on importing these proteins into the plastid. On the other hand, changes in functional or metabolic states of plastids have been known to affect the expression of nuclear genes encoding plastid proteins, and are collectively called "plastid signals." This regulation is also important for maintaining plastid function. This review focuses on the roles of these anterograde and retrograde pathways in plastid biogenesis and environmental adaptation.


Assuntos
Adaptação Fisiológica , Núcleo Celular/metabolismo , Plastídeos/metabolismo , Transdução de Sinais/fisiologia , Transporte Ativo do Núcleo Celular , Proteínas de Algas/metabolismo , Núcleo Celular/genética , Regulação da Expressão Gênica , Proteínas de Plantas/metabolismo , Plastídeos/genética , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Via Secretória , Tetrapirróis/biossíntese
19.
Sci Rep ; 10(1): 2353, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047175

RESUMO

To improve the photosynthetic performance of C3 plants, installing cyanobacterial bicarbonate transporters to the chloroplast inner envelope membrane (IEM) has been proposed for years. In our previous study, we successfully introduced chimeric cyanobacterial sodium-dependent bicarbonate transporters, BicA or SbtA, to the chloroplast IEM of Arabidopsis. However, the installation of authentic BicA and SbtA to the chloroplast IEM has not been achieved yet. In this study, we examined whether or not tobacco etch virus (TEV) protease targeted within chloroplasts can cleave chimeric proteins and produce authentic bicarbonate transporters. To this end, we constructed a TEV protease that carried the transit peptide and expressed it with chimeric BicA or SbtA proteins containing a TEV cleavage site in planta. Chimeric proteins were cleaved only when the TEV protease was co-expressed. The authentic forms of hemagglutinin-tagged BicA and SbtA were detected in the chloroplast IEM. In addition, cleavage of chimeric proteins at the TEV recognition site seemed to occur after the targeting of chimeric proteins to the chloroplast IEM. We conclude that the cleavage of chimeric proteins within chloroplasts is an efficient way to install authentic bicarbonate transporters to the chloroplast IEM. Furthermore, a similar approach can be applied to other bacterial plasma membrane proteins.


Assuntos
Arabidopsis/genética , Proteínas de Bactérias/metabolismo , Cloroplastos/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Proteínas de Bactérias/genética , Cloroplastos/genética , Peptídeo Hidrolases/metabolismo , Potyvirus/enzimologia , Engenharia de Proteínas/métodos , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Simportadores de Sódio-Bicarbonato/genética , Transgenes , Proteínas Virais/metabolismo
20.
Sci Rep ; 10(1): 20255, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219240

RESUMO

The majority of genes encoding photosynthesis-associated proteins in the nucleus are induced by light during photomorphogenesis, allowing plants to establish photoautotrophic growth. Therefore, optimizing the protein import apparatus of plastids, designated as the translocon at the outer and inner envelope membranes of chloroplast (TOC-TIC) complex, upon light exposure is a prerequisite to the import of abundant nuclear-encoded photosynthesis-associated proteins. However, the mechanism that coordinates the optimization of the TOC-TIC complex with the expression of nuclear-encoded photosynthesis-associated genes remains to be characterized in detail. To address this question, we investigated the mechanism by which plastid protein import is regulated by light during photomorphogenesis in Arabidopsis. We found that the albino plastid protein import2 (ppi2) mutant lacking Toc159 protein import receptors have active photoreceptors, even though the mutant fails to induce the expression of photosynthesis-associated nuclear genes upon light illumination. In contrast, many TOC and TIC genes are rapidly induced by blue light in both WT and the ppi2 mutant. We uncovered that this regulation is mediated primarily by cryptochrome 1 (CRY1). Furthermore, deficiency of CRY1 resulted in the decrease of some TOC proteins in vivo. Our results suggest that CRY1 plays key roles in optimizing the content of the TOC-TIC apparatus to accommodate the import of abundant photosynthesis-associated proteins during photomorphogenesis.


Assuntos
Arabidopsis/fisiologia , Criptocromos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Luz , Morfogênese , Fotossíntese/genética , Arabidopsis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA