RESUMO
OBJECTIVE: The objective of this study was to examine the association of cardiorespiratory events, including apnea, periodic breathing, intermittent hypoxemia (IH), and bradycardia, with late-onset sepsis for extremely preterm infants (<29 weeks of gestational age) on vs off invasive mechanical ventilation. STUDY DESIGN: This is a retrospective analysis of data from infants enrolled in Pre-Vent (ClinicalTrials.gov identifier NCT03174301), an observational study in 5 level IV neonatal intensive care units. Clinical data were analyzed for 737 infants (mean gestational age: 26.4 weeks, SD 1.71). Monitoring data were available and analyzed for 719 infants (47 512 patient-days); of whom, 109 had 123 sepsis events. Using continuous monitoring data, we quantified apnea, periodic breathing, bradycardia, and IH. We analyzed the relationships between these daily measures and late-onset sepsis (positive blood culture >72 hours after birth and ≥5-day antibiotics). RESULTS: For infants not on a ventilator, apnea, periodic breathing, and bradycardia increased before sepsis diagnosis. During times on a ventilator, increased sepsis risk was associated with longer events with oxygen saturation <80% (IH80) and more bradycardia events before sepsis. IH events were associated with higher sepsis risk but did not dynamically increase before sepsis, regardless of ventilator status. A multivariable model including postmenstrual age, cardiorespiratory variables (apnea, periodic breathing, IH80, and bradycardia), and ventilator status predicted sepsis with an area under the receiver operator characteristic curve of 0.783. CONCLUSION: We identified cardiorespiratory signatures of late-onset sepsis. Longer IH events were associated with increased sepsis risk but did not change temporally near diagnosis. Increases in bradycardia, apnea, and periodic breathing preceded the clinical diagnosis of sepsis.
Assuntos
Apneia , Bradicardia , Hipóxia , Lactente Extremamente Prematuro , Sepse , Humanos , Bradicardia/epidemiologia , Bradicardia/etiologia , Apneia/epidemiologia , Estudos Retrospectivos , Recém-Nascido , Hipóxia/complicações , Feminino , Masculino , Sepse/complicações , Sepse/epidemiologia , Doenças do Prematuro/epidemiologia , Doenças do Prematuro/diagnóstico , Respiração Artificial , Unidades de Terapia Intensiva Neonatal , Idade GestacionalRESUMO
BACKGROUND: In extremely preterm infants, persistence of cardioventilatory events is associated with long-term morbidity. Therefore, the objective was to characterize physiologic growth curves of apnea, periodic breathing, intermittent hypoxemia, and bradycardia in extremely preterm infants during the first few months of life. METHODS: The Prematurity-Related Ventilatory Control study included 717 preterm infants <29 weeks gestation. Waveforms were downloaded from bedside monitors with a novel sharing analytics strategy utilized to run software locally, with summary data sent to the Data Coordinating Center for compilation. RESULTS: Apnea, periodic breathing, and intermittent hypoxemia events rose from day 3 of life then fell to near-resolution by 8-12 weeks of age. Apnea/intermittent hypoxemia were inversely correlated with gestational age, peaking at 3-4 weeks of age. Periodic breathing was positively correlated with gestational age peaking at 31-33 weeks postmenstrual age. Females had more periodic breathing but less intermittent hypoxemia/bradycardia. White infants had more apnea/periodic breathing/intermittent hypoxemia. Infants never receiving mechanical ventilation followed similar postnatal trajectories but with less apnea and intermittent hypoxemia, and more periodic breathing. CONCLUSIONS: Cardioventilatory events peak during the first month of life but the actual postnatal trajectory is dependent on the type of event, race, sex and use of mechanical ventilation. IMPACT: Physiologic curves of cardiorespiratory events in extremely preterm-born infants offer (1) objective measures to assess individual patient courses and (2) guides for research into control of ventilation, biomarkers and outcomes. Presented are updated maturational trajectories of apnea, periodic breathing, intermittent hypoxemia, and bradycardia in 717 infants born <29 weeks gestation from the multi-site NHLBI-funded Pre-Vent study. Cardioventilatory events peak during the first month of life but the actual postnatal trajectory is dependent on the type of event, race, sex and use of mechanical ventilation. Different time courses for apnea and periodic breathing suggest different maturational mechanisms.
Assuntos
Doenças do Prematuro , Transtornos Respiratórios , Lactente , Feminino , Recém-Nascido , Humanos , Lactente Extremamente Prematuro , Apneia , Bradicardia/terapia , Respiração , HipóxiaRESUMO
The prevalence of e-cigarette use among young adults in the USA is high (14%). Although the majority of users plan to quit vaping, the motivation to make a quit attempt is low and available support during a quit attempt is limited. Using wearable sensors to collect physiological data (eg, heart rate) holds promise for capturing the right timing to deliver intervention messages. This study aims to fill the current knowledge gap by proposing statistical methods to (1) de-noise beat-to-beat interval (BBI) data from smartwatches worn by 12 young adult regular e-cigarette users for 7 days; and (2) summarize the de-noised data by event and control segments. We also conducted a comprehensive review of conventional methods for summarizing heart rate variability (HRV) and compared their performance with the proposed method. The results show that the proposed singular spectrum analysis (SSA) can effectively de-noise the highly variable BBI data, as well as quantify the proportion of total variation extracted. Compared to existing HRV methods, the proposed second order polynomial model yields the highest area under the curve (AUC) value of 0.76 and offers better interpretability. The findings also indicate that the average heart rate before vaping is higher and there is an increasing trend in the heart rate before the vaping event. Importantly, the development of increasing heart rate observed in this study implies that there may be time to intervene as this physiological signal emerges. This finding, if replicated in a larger scale study, may inform optimal timings for delivering messages in future intervention.
Assuntos
Frequência Cardíaca , Vaping , Dispositivos Eletrônicos Vestíveis , Humanos , Frequência Cardíaca/fisiologia , Adulto Jovem , Masculino , Feminino , Sistemas Eletrônicos de Liberação de Nicotina/estatística & dados numéricos , Adulto , Modelos EstatísticosRESUMO
BACKGROUND: Repeated opioid exposure leads to a variety of physiologic adaptations that develop at different rates and may foreshadow risk of opioid-use disorder (OUD), including dependence and withdrawal. Digital pharmacovigilance strategies that use noninvasive sensors to identify physiologic adaptations to opioid use represent a novel strategy to facilitate safer opioid prescribing. This study aims to identify wearable sensor-derived features associated with opioid dependence by comparing opioid-naïve individuals to chronic opioid users with acute pain and developing a machine-learning model to distinguish between the 2 groups. METHODS: Using a longitudinal observational study design, continuous physiologic data were collected on participants with acute pain receiving opioid analgesia. Monitoring continued throughout hospitalization and for up to 7 days posthospital discharge. Opioid administration data were obtained from electronic health record (EHR) and participant self-report. Participants were classified as belonging to 1 of 3 categories based on opioid use history: naïve, occasional, or chronic use. Thirty features were derived from sensor data, and an additional 9 features were derived from participant demographic and treatment characteristics. Physiologic feature behavior immediately postopioid use was compared among naïve and chronic participants, and subsequently features were used to generate machine learning models which were validated using cross-validation and holdout data. RESULTS: Forty-one participants with a combined total of 169 opioid administrations were ultimately included in the final analysis. Four interpretable decision tree-based machine learning models with 14 sensor-based and 5 clinical features were developed to predict class membership on the level of a given observation (dose) and on the participant level. Ranges for model metrics on the participant level were as follows: accuracy 70% to 90%, sensitivity 67% to 100%, and specificity 67% to 100%. CONCLUSIONS: Wearable sensor-derived digital biomarkers can be used to predict opioid use status (naïve versus chronic) and the differentiating features may be detecting opioid dependence. Future work should be aimed at further delineating the phenomenon identified in these models (including opioid dependence and/or withdrawal) and at identifying transition states where an individual changes from 1 profile to another with repetitive opioid exposure.
RESUMO
Rationale: Bedside biomarkers that allow early identification of infants with bronchopulmonary dysplasia-associated pulmonary hypertension (BPD-PH) are critically important, given the higher risk of death in these infants. Objectives: We hypothesized that infants with BPD-PH have patterns of intermittent hypoxemia (IH) that differ from infants with BPD without PH. Methods: We conducted a matched case-control study of extremely preterm infants from 22 weeks 0 days to 28 weeks 6 days born between 2018 and 2020 at the University of Alabama at Birmingham. BPD-PH status was determined using echocardiographic data performed after postnatal Day 28. Physiologic data were compared between infants with BPD-PH (cases) and BPD alone (control subjects). Receiver operating characteristic (ROC) analysis estimated the predictive ability of cumulative hypoxemia, desaturation frequency, and duration of intermittent hypoxemic events in the week preceding echocardiography to discriminate between cases and control subjects. Measurements and Main Results: Forty infants with BPD-PH were compared with 40 infants with BPD alone. Infants with and without PH had a similar frequency of IH events, but infants with PH had more prolonged hypoxemic events for desaturations below 80% (7 s vs. 6 s; P = 0.03) and 70% (105 s vs. 58 s; P = 0.008). Among infants with BPD-PH, infants who died had longer hypoxemic events below 70% (145 s vs. 72 s; P = 0.01). Using the duration of hypoxemic events below 70%, the areas under the ROC curves for diagnosis of BPD-PH and death in BPD-PH infants were 0.71 and 0.77, respectively. Conclusions: Longer duration of intermittent hypoxemic events was associated both with a diagnosis of BPD-PH and with death among infants with BPD-PH.
Assuntos
Displasia Broncopulmonar , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Lactente , Recém-Nascido , Humanos , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/diagnóstico por imagem , Estudos de Casos e Controles , Idade Gestacional , Lactente Extremamente Prematuro , Hipóxia/complicações , Hipertensão Arterial Pulmonar/complicaçõesRESUMO
Rationale: Immature control of breathing is associated with apnea, periodic breathing, intermittent hypoxemia, and bradycardia in extremely preterm infants. However, it is not clear if such events independently predict worse respiratory outcome. Objectives: To determine if analysis of cardiorespiratory monitoring data can predict unfavorable respiratory outcomes at 40 weeks postmenstrual age (PMA) and other outcomes, such as bronchopulmonary dysplasia at 36 weeks PMA. Methods: The Prematurity-related Ventilatory Control (Pre-Vent) study was an observational multicenter prospective cohort study including infants born at <29 weeks of gestation with continuous cardiorespiratory monitoring. The primary outcome was either "favorable" (alive and previously discharged or inpatient and off respiratory medications/O2/support at 40 wk PMA) or "unfavorable" (either deceased or inpatient/previously discharged on respiratory medications/O2/support at 40 wk PMA). Measurements and Main Results: A total of 717 infants were evaluated (median birth weight, 850 g; gestation, 26.4 wk), 53.7% of whom had a favorable outcome and 46.3% of whom had an unfavorable outcome. Physiologic data predicted unfavorable outcome, with accuracy improving with advancing age (area under the curve, 0.79 at Day 7, 0.85 at Day 28 and 32 wk PMA). The physiologic variable that contributed most to prediction was intermittent hypoxemia with oxygen saturation as measured by pulse oximetry <90%. Models with clinical data alone or combining physiologic and clinical data also had good accuracy, with areas under the curve of 0.84-0.85 at Days 7 and 14 and 0.86-0.88 at Day 28 and 32 weeks PMA. Intermittent hypoxemia with oxygen saturation as measured by pulse oximetry <80% was the major physiologic predictor of severe bronchopulmonary dysplasia and death or mechanical ventilation at 40 weeks PMA. Conclusions: Physiologic data are independently associated with unfavorable respiratory outcome in extremely preterm infants.
Assuntos
Displasia Broncopulmonar , Lactente Extremamente Prematuro , Lactente , Recém-Nascido , Humanos , Estudos Prospectivos , Respiração Artificial , HipóxiaRESUMO
BACKGROUND: Identifying suicidal risk based on clinical assessment is challenging. Suicidal ideation fluctuates, can be downplayed or denied, and seems stigmatizing if divulged. In contrast, vitality is foundational to subjectivity in being immediately conscious before reflection. Including its assessment may improve detection of suicidal risk compared to relying on suicidal ideation alone. We hypothesized that objective motility measures would be associated with vitality and enhance assessment of suicidal risk. METHODS: We evaluated 83 adult-psychiatric outpatients with a DSM-5 bipolar (BD) or major depressive disorder (MDD): BD-I (n = 48), BD-II (20), and MDD (15) during a major depressive episode. They were actigraphically monitored continuously over 3 weekdays and self-rated their subjective states at regular intervals. We applied cosinor analysis to actigraphic data and analyzed associations of subjective psychopathology measures with circadian activity parameters. RESULTS: Actigraphic circadian mesor, amplitude, day- and nighttime activity were lower with BD versus MDD. Self-rated vitality (wish-to-live) was significantly lower, self-rated suicidality (wish-to-die) was higher, and their difference was lower, with BD versus MDD. There were no other significant diagnostic differences in actigraphic sleep parameters or in self-rated depression, dysphoria, or anxiety. By linear regression, the difference between vitality and passive suicidal ideation was strongly positively correlated with mesor (p < 0.0001), daytime activity (p < 0.0001), and amplitude (p = 0.001). CONCLUSIONS: Higher circadian activity measures reflected enhanced levels of subjective vitality and were associated with lesser suicidal ideation. Current suicidal-risk assessment might usefully include monitoring of motility and vitality in addition to examining negative affects and suicidal thinking.
Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Adulto , Humanos , Transtorno Depressivo Maior/psicologia , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/psicologia , Ideação Suicida , Actigrafia , AnsiedadeRESUMO
The possible mechanisms for the synchronization of rest-activity rhythms of individual animals living in groups is a relatively understudied question; synchronized rhythms could occur by entrainment of individuals to a common external force and/or by social synchronization between individuals. To gain insight into this question, we explored the synchronization dynamics of populations of globally coupled Kuramoto oscillators and analyzed the effects of a finite oscillator number (N) and the variable strengths of their periodic forcing (F) and mutual coupling (K). We found that increasing N promotes entrainment to a decreasing value of F, but that F could not be reduced below a certain level determined by the number of oscillators and the distribution width of their intrinsic frequencies. Our analysis prompts some simple predictions of ecologically optimal animal group sizes under differing natural conditions.
Assuntos
Comportamento Animal , Modelos Biológicos , Periodicidade , Descanso , Comportamento Social , Animais , Processos GrupaisRESUMO
BACKGROUND: The increasing incidence of bronchopulmonary dysplasia in premature babies may be due in part to immature ventilatory control, contributing to hypoxemia. The latter responds to ventilation and/or oxygen therapy, treatments associated with adverse sequelae. This is an overview of the Prematurity-Related Ventilatory Control Study which aims to analyze the under-utilized cardiorespiratory continuous waveform monitoring data to delineate mechanisms of immature ventilatory control in preterm infants and identify predictive markers. METHODS: Continuous ECG, heart rate, respiratory, and oxygen saturation data will be collected throughout the NICU stay in 500 infants < 29 wks gestation across 5 centers. Mild permissive hypercapnia, and hyperoxia and/or hypoxia assessments will be conducted in a subcohort of infants along with inpatient questionnaires, urine, serum, and DNA samples. RESULTS: Primary outcomes will be respiratory status at 40 wks and quantitative measures of immature breathing plotted on a standard curve for infants matched at 36-37 wks. Physiologic and/or biologic determinants will be collected to enhance the predictive model linking ventilatory control to outcomes. CONCLUSIONS: By incorporating bedside monitoring variables along with biomarkers that predict respiratory outcomes we aim to elucidate individualized cardiopulmonary phenotypes and mechanisms of ventilatory control contributing to adverse respiratory outcomes in premature infants.
Assuntos
Displasia Broncopulmonar/fisiopatologia , Protocolos Clínicos , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Monitorização Fisiológica , Estudos Prospectivos , Projetos de Pesquisa , Fenômenos Fisiológicos RespiratóriosRESUMO
OBJECTIVE: To test the hypothesis that environmental compared with nasal cannula oxygen decreases episodes of intermittent hypoxemia (oxygen saturations <85% for ≥10 seconds) in preterm infants on supplemental oxygen by providing a more stable hypopharyngeal oxygen concentration. STUDY DESIGN: This was a single center randomized crossover trial with a 1:1 parallel allocation to order of testing. Preterm infants on supplemental oxygen via oxygen environment maintained by a servo-controlled system or nasal cannula with flow rates ≤1.0 L per kg per minute were crossed over every 24 hours for 96 hours. Data were collected electronically to capture real time numeric and waveform data from patient monitors. RESULTS: Twenty-five infants with gestational age of 27 ± 2 weeks (mean ± SD) and a birth weight of 933 ± 328 g were studied at postnatal day 36 ± 26. The number of episodes of intermittent hypoxemia per 24 hours was 117 ± 77 (median, 98; range, 4-335) with oxygen environment vs 130 ± 63 (median, 136; range, 16-252) with nasal cannula (P = .002). Infants on oxygen environment compared with nasal cannula also had decreased episodes of severe intermittent hypoxemia (P = .005). Infants on oxygen environment compared with nasal cannula had a lower proportion of time with oxygen saturations <85% (.05 ± .03 vs .06 ± .03, P < .001), and a lower coefficient of variation of oxygen saturation (P = .02). CONCLUSIONS: In preterm infants receiving supplemental oxygen, servo-controlled oxygen environment decreases hypoxemia compared with nasal cannula. TRIAL REGISTRATION: ClinicalTrials.gov: NCT02794662.
Assuntos
Cânula , Hipóxia/terapia , Recém-Nascido Prematuro , Oxigenoterapia/instrumentação , Pressão Positiva Contínua nas Vias Aéreas/métodos , Estudos Cross-Over , Desenho de Equipamento , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Masculino , NarizRESUMO
Communal animals often engage in group activities that require temporal synchrony among its members, including synchrony on the circadian timescale. The principles and conditions that foster such collective synchronization are not understood, but existing literature hints that the number of interacting individuals may be a critical factor. We tested this by recording individual circadian body temperature rhythms of female house mice housed singly, in twos (pairs), or in groups of five (quintets) in constant darkness; determining the daily phases of the circadian peak for each animal; and then calculating the cycle-to-cycle phase relationship between cohabiting animals over time. Significant temporal coherence was observed in quintets: the proportion of quintets (4/7), but not pairs (2/8), that became synchronized was greater than could be achieved by the complete simulated reassortment of all individuals. We speculate that the social coupling of individual circadian clocks of group members may be adaptive under certain conditions, and we propose that optimal group sizes in nature may depend not only on species-specific energetics, spatial behaviour and natural history but also on the mathematics of synchronizing assemblies of weakly coupled animal oscillators.
Assuntos
Ritmo Circadiano , Camundongos/fisiologia , Comportamento Social , Animais , Temperatura Corporal , Relógios Circadianos , Feminino , Camundongos Endogâmicos BALB CRESUMO
A number of field and laboratory studies have shown that the social environment influences daily rhythms in numerous species. However, underlying mechanisms, including the circadian system's role, are not known. Obstacles to this research have been the inability to track and objectively analyse rhythms of individual animals housed together. Here, we employed temperature dataloggers to track individual body temperature rhythms of pairs of cohabiting male Syrian hamsters (Mesocricetus auratus) in constant darkness and applied a continuous wavelet transform to determine the phase of rhythm onset before, during, and after cohabitation. Cohabitation altered the predicted trajectory of rhythm onsets in 34% of individuals, representing 58% of pairs, compared to 12% of hamsters single-housed as 'virtual pair' controls. Deviation from the predicted trajectory was by a change in circadian period (τ), which tended to be asymmetric-affecting one individual of the pair in nine of 11 affected pairs-with hints that dominance might play a role. These data implicate a change in the speed of the circadian clock as one mechanism whereby social factors can alter daily rhythms. Miniature dataloggers coupled with wavelet analyses should provide powerful tools for future studies investigating the principles and mechanisms mediating social influences on daily timing.
Assuntos
Comportamento Animal , Ritmo Circadiano , Cricetinae/fisiologia , Comportamento Social , Animais , Masculino , Dinâmica Populacional , Fatores de TempoRESUMO
BACKGROUND: Digital health interventions offer opportunities to expand access to substance use disorder (SUD) treatment, collect objective real-time data, and deliver just-in-time interventions: however implementation has been limited. RAE (Realize, Analyze, Engage) Health is a digital tool which uses continuous physiologic data to detect high risk behavioral states (stress and craving) during SUD recovery. METHODS: This was an observational study to evaluate the digital stress and craving detection during outpatient SUD treatment. Participants were asked to use the RAE Health app, wear a commercial-grade wrist sensor over a 30-day period. They were asked to self-report stress and craving, at which time were offered brief in-app de-escalation tools. Supervised machine learning algorithms were applied retrospectively to wearable sensor data obtained to develop group-based digital biomarkers for stress and craving. Engagement was assessed by number of days of utilization, and number of hours in a given day of connection. RESULTS: Sixty percent of participants (N=30) completed the 30-day protocol. The model detected stress and craving correctly 76 % and 69 % of the time, respectively, but with false positive rates of 33 % and 28 % respectively. All models performed close to previously validated models from a research grade sensor. Participants used the app for a mean of 14.2 days (SD 10.1) and 11.7 h per day (SD 8.2). Anxiety disorders were associated with higher mean hours per day connected, and return to drug use events were associated with lower mean hours per day connected. CONCLUSIONS: Future work should explore the effect of similar digital health systems on treatment outcomes and the optimal dose of digital interventions needed to make a clinically significant impact.
Assuntos
Fissura , Estresse Psicológico , Transtornos Relacionados ao Uso de Substâncias , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Fissura/fisiologia , Aplicativos Móveis , Estresse Psicológico/diagnóstico , Transtornos Relacionados ao Uso de Substâncias/terapia , Dispositivos Eletrônicos VestíveisRESUMO
Objective: Highly comparative time series analysis (HCTSA) is a novel approach involving massive feature extraction using publicly available code from many disciplines. The Prematurity-Related Ventilatory Control (Pre-Vent) observational multicenter prospective study collected bedside monitor data from > 700 extremely preterm infants to identify physiologic features that predict respiratory outcomes. We calculated a subset of 33 HCTSA features on > 7M 10-minute windows of oxygen saturation (SPO2) and heart rate (HR) from the Pre-Vent cohort to quantify predictive performance. This subset included representatives previously identified using unsupervised clustering on > 3500 HCTSA algorithms. Performance of each feature was measured by individual area under the receiver operating curve (AUC) at various days of life and binary respiratory outcomes. These were compared to optimal PreVent physiologic predictor IH90 DPE, the duration per event of intermittent hypoxemia events with threshold of 90%. Main Results: The top HCTSA features were from a cluster of algorithms associated with the autocorrelation of SPO2 time series and identified low frequency patterns of desaturation as high risk. These features had comparable performance to and were highly correlated with IH90_DPE but perhaps measure the physiologic status of an infant in a more robust way that warrants further investigation. The top HR HCTSA features were symbolic transformation measures that had previously been identified as strong predictors of neonatal mortality. HR metrics were only important predictors at early days of life which was likely due to the larger proportion of infants whose outcome was death by any cause. A simple HCTSA model using 3 top features outperformed IH90_DPE at day of life 7 (.778 versus .729) but was essentially equivalent at day of life 28 (.849 versus .850). These results validated the utility of a representative HCTSA approach but also provides additional evidence supporting IH90_DPE as an optimal predictor of respiratory outcomes.
RESUMO
Objectives: Detection of changes in cardiorespiratory events, including apnea, periodic breathing, intermittent hypoxemia (IH), and bradycardia, may facilitate earlier detection of sepsis. Our objective was to examine the association of cardiorespiratory events with late-onset sepsis for extremely preterm infants (<29 weeks' gestational age (GA)) on versus off invasive mechanical ventilation. Study Design: Retrospective analysis of data from infants enrolled in Pre-Vent (ClinicalTrials.gov identifier NCT03174301), an observational study in five level IV neonatal intensive care units. Clinical data were analyzed for 737 infants (mean GA 26.4w, SD 1.71). Monitoring data were available and analyzed for 719 infants (47,512 patient-days), of whom 109 had 123 sepsis events. Using continuous monitoring data, we quantified apnea, periodic breathing, bradycardia, and IH. We analyzed the relationships between these daily measures and late-onset sepsis (positive blood culture >72h after birth and ≥5d antibiotics). Results: For infants not on a ventilator, apnea, periodic breathing, and bradycardia increased before sepsis diagnosis. During times on a ventilator, increased sepsis risk was associated with longer IH80 events and more bradycardia events before sepsis. IH events were associated with higher sepsis risk, but did not dynamically increase before sepsis, regardless of ventilator status. A multivariable model predicted sepsis with an AUC of 0.783. Conclusion: We identified cardiorespiratory signatures of late-onset sepsis. Longer IH events were associated with increased sepsis risk but did not change temporally near diagnosis. Increases in bradycardia, apnea, and periodic breathing preceded the clinical diagnosis of sepsis.
RESUMO
Objective.Highly comparative time series analysis (HCTSA) is a novel approach involving massive feature extraction using publicly available code from many disciplines. The Prematurity-Related Ventilatory Control (Pre-Vent) observational multicenter prospective study collected bedside monitor data from>700extremely preterm infants to identify physiologic features that predict respiratory outcomes.Approach. We calculated a subset of 33 HCTSA features on>7 M 10 min windows of oxygen saturation (SPO2) and heart rate (HR) from the Pre-Vent cohort to quantify predictive performance. This subset included representatives previously identified using unsupervised clustering on>3500HCTSA algorithms. We hypothesized that the best HCTSA algorithms would compare favorably to optimal PreVent physiologic predictor IH90_DPE (duration per event of intermittent hypoxemia events below 90%).Main Results.The top HCTSA features were from a cluster of algorithms associated with the autocorrelation of SPO2 time series and identified low frequency patterns of desaturation as high risk. These features had comparable performance to and were highly correlated with IH90_DPE but perhaps measure the physiologic status of an infant in a more robust way that warrants further investigation. The top HR HCTSA features were symbolic transformation measures that had previously been identified as strong predictors of neonatal mortality. HR metrics were only important predictors at early days of life which was likely due to the larger proportion of infants whose outcome was death by any cause. A simple HCTSA model using 3 top features outperformed IH90_DPE at day of life 7 (.778 versus .729) but was essentially equivalent at day of life 28 (.849 versus .850).Significance. These results validated the utility of a representative HCTSA approach but also provides additional evidence supporting IH90_DPE as an optimal predictor of respiratory outcomes.
Assuntos
Frequência Cardíaca , Lactente Extremamente Prematuro , Saturação de Oxigênio , Humanos , Frequência Cardíaca/fisiologia , Recém-Nascido , Saturação de Oxigênio/fisiologia , Lactente Extremamente Prematuro/fisiologia , Fatores de Tempo , Algoritmos , Respiração , Feminino , Estudos ProspectivosRESUMO
Pulmonary hypertension (PH) is a complex cardiovascular condition associated with multiple morbidities and mortality risk in preterm infants. PH often complicates the clinical course of infants who have bronchopulmonary dysplasia (BPD), a more common lung disease in these neonates, causing respiratory deterioration and an even higher risk of mortality. While risk factors and prevalence of PH are not yet well defined, early screening and management of PH in infants with BPD are recommended by consensus guidelines from the American Heart Association. In this study, we propose a screening method for PH by applying a signal analysis technique to oxygen saturation in infants. Oxygen saturation data from infant groups with BPD (41 with and 60 without PH), recorded prior to their clinical PH diagnosis were analyzed in this study. An information-based similarity approach was applied to quantify the regularity of SpO2 fluctuations represented as binary words between adjacent five-minute segments. Similarity indices (SI) were observed to be lower in subjects with PH compared to those with BPD alone (p<0.001). These measures were also assessed for performance in screening for PH. SI of 7-bit words, exhibited 80% detection accuracy, 76% sensitivity and specificity of 83%. This index also exhibited a cross-validated mean (SD) F1-score of 0.80 (0.08) ensuring that sensitivity and recall of the screening were balanced. Similarity analysis of oxygen saturation patterns is a novel technique that can be potentially developed into a signal based early PH detection method to support clinical decision and care in this vulnerable population.
RESUMO
Background: Oxygen supplementation is commonly used to maintain oxygen saturation (SpO2) levels in preterm infants within target ranges to reduce intermittent hypoxemic (IH) events, which are associated with short- and long-term morbidities. There is not much information available about differences in oxygenation patterns in infants undergoing such supplementations nor their relation to observed IH events. This study aimed to describe oxygenation characteristics during two types of supplementation by studying SpO2 signal features and assess their performance in hypoxemia risk screening during NICU monitoring. Subjects and methods: SpO2 data from 25 infants with gestational age <32 weeks and birthweight <2,000â g who underwent a cross over trial of low-flow nasal cannula (NC) and digitally-set servo-controlled oxygen environment (OE) supplementations was considered in this secondary analysis. Features pertaining to signal distribution, variability and complexity were estimated and analyzed for differences between the supplementations. Univariate and regularized multivariate logistic regression was applied to identify relevant features and develop screening models for infants likely to experience a critically high number of IH per day of observation. Their performance was assessed using area under receiver operating curves (AUROC), accuracy, sensitivity, specificity and F1 scores. Results: While most SpO2 measures remained comparable during both supplementations, signal irregularity and complexity were elevated while on OE, pointing to more volatility in oxygen saturation during this supplementation mode. In addition, SpO2 variability measures exhibited early prognostic value in discriminating infants at higher risk of critically many IH events. Poincare plot variability at lag 1 had AUROC of 0.82, 0.86, 0.89 compared to 0.63, 0.75, 0.81 for the IH number, a clinical parameter at observation times of 30â min, 1 and 2â h, respectively. Multivariate models with two features exhibited validation AUROC > 0.80, F1 score > 0.60 and specificity >0.85 at observation times ≥ 1â h. Finally, we proposed a framework for risk stratification of infants using a cumulative risk score for continuous monitoring. Conclusion: Analysis of oxygen saturation signal routinely collected in the NICU, may have extensive applications in inferring subtle changes to cardiorespiratory dynamics under various conditions as well as in informing clinical decisions about infant care.
RESUMO
Novel technologies have great potential to improve the treatment of individuals with substance use disorder (SUD) and to reduce the current high rate of relapse (i.e. return to drug use). Wearable sensor-based systems that continuously measure physiology can provide information about behavior and opportunities for real-time interventions. We have previously developed an mHealth system which includes a wearable sensor, a mobile phone app, and a cloud-based server with embedded machine learning algorithms which detect stress and craving. The system functions as a just-in-time intervention tool to help patients de-escalate and as a tool for clinicians to tailor treatment based on stress and craving patterns observed. However, in our pilot work we found that to deploy the system to diverse socioeconomic populations and to increase usability, the system must be able to work efficiently with cost-effective and popular commercial wearable devices. To make the system device agnostic, methods to transform the data from a commercially available wearable for use in algorithms developed from research grade wearable sensor are proposed. The accuracy of these transformations in detecting stress and craving in individuals with SUD is further explored.
RESUMO
Introduction: Though the nature of breastfeeding is critical, scant information is available on how the action of the milk transfer from mother to infant is regulated in humans, where the points of dysfunction are, and what can be done to optimize breastfeeding outcomes. While better therapeutic strategies are needed, before they can be devised, a basic scientific understanding of the biomechanical mechanisms that regulate human milk transfer from breast to stomach must first be identified, defined, and understood. Methods: Combining systems biology and systems medicine into a conceptual framework, using engineering design principles, this work investigates the use of biosensors to characterize human milk flow from the breast to the infant's stomach to identify points of regulation. This exploratory study used this framework to characterize Maternal/Infant Lactation physioKinetics (MILK) utilizing a Biosensor ARray (BAR) as a data collection method. Results: Participants tolerated the MILKBAR well during data collection. Changes in breast turgor and temperature were significant and related to the volume of milk transferred from the breast. The total milk volume transferred was evaluated in relation to contact force, oral pressure, and jaw movement. Contact force was correlated with milk flow. Oral pressure appears to be a redundant measure and reflective of jaw movements. Discussion: Nipple and breast turgor, jaw movement, and swallowing were associated with the mass of milk transferred to the infant's stomach. More investigation is needed to better quantify the mass of milk transferred in relation to each variable and understand how each variable regulates milk transfer.