Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 21(4): 1900-1918, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469754

RESUMO

The use of amorphous solid dispersions (ASDs) in commercial drug products has increased in recent years due to the large number of poorly soluble drugs in the pharmaceutical pipeline. However, the release behavior of ASDs is complex and remains not well understood. Often, the drug release from ASDs is rapid and complete at lower drug loadings (DLs) but becomes slow and incomplete at higher DLs. The DL where release becomes hindered is termed the limit of congruency (LoC). Currently, there are no approaches to predict the LoC. However, recent findings show that one potential cause leading to the LoC is a change in phase morphology after water-induced phase separation at the ASD/solution interface. In this study, the phase behavior of ASDs in contact with aqueous solutions was described thermodynamically by constructing experimental and computational ternary phase diagrams, and these were used to predict morphology changes and ultimately the LoC. Experimental ternary phase diagrams were obtained by equilibrating ASD/water mixtures over time. Computational ternary phase diagrams were obtained by Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT). The morphology of the hydrophobic phase was studied with fluorescence confocal microscopy. It was demonstrated that critical point (plait point) composition approximately corresponded to the ASD DL, where the hydrophobic phase, formed during phase separation, became interconnected and hindered ASD release. This work provides mechanistic insights into the ASD release behavior and highlights the potential of in silico ASD design using phase diagrams.


Assuntos
Água , Solubilidade , Liberação Controlada de Fármacos , Água/química , Interações Hidrofóbicas e Hidrofílicas , Composição de Medicamentos
2.
Mol Pharm ; 20(4): 2217-2234, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36926898

RESUMO

Despite the recent success of amorphous solid dispersions (ASDs) at enabling the delivery of poorly soluble small molecule drugs, ASD-based dosage forms are limited by low drug loading. This is partially due to a sharp decline in drug release from the ASD at drug loadings surpassing the 'limit of congruency' (LoC). In some cases, the LoC is as low as 5% drug loading, significantly increasing the risk of pill burden. Despite efforts to understand the mechanism responsible for the LoC, a clear picture of the molecular processes occurring at the ASD/solution interface remains elusive. In this study, the ASD/solution interface was studied for two model compounds formulated as ASDs with copovidone. The evolution of a gel layer and its phase behavior was captured in situ with fluorescence confocal microscopy, where fluorescent probes were added to label the hydrophobic and hydrophilic phases. Phase separation was detected in the gel layer for most of the ASDs. The morphology of the hydrophobic phase was found to correlate with the release behavior, where a discrete phase resulted in good release and a continuous phase formed a barrier leading to poor release. The continuous phase formed at a lower drug loading for the system with stronger drug-polymer interactions. This was due to incorporation of the polymer into the hydrophobic phase. The study highlights the complex molecular and phase behavior at the ASD/solution interface of copovidone-based ASDs and provides a thermodynamic argument for qualitatively predicting the release behavior based on drug-polymer interactions.


Assuntos
Polímeros , Compostos de Vinila , Solubilidade , Liberação Controlada de Fármacos , Compostos de Vinila/química , Preparações Farmacêuticas , Polímeros/química , Composição de Medicamentos/métodos
3.
Mol Pharm ; 20(1): 722-737, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36545917

RESUMO

High drug load amorphous solid dispersions (ASDs) have been a challenge to formulate partially because drug release is inhibited at high drug loads. The maximum drug load prior to inhibition of release has been termed the limit of congruency (LoC) and has been most widely studied for copovidone (PVPVA)-based ASDs. The terminology was derived from the observation that below LoC, the polymer controlled the kinetics and the drug and the polymer released congruently, while above LoC, the release rates diverged and were impaired. Recent studies show a correlation between the LoC value and drug-polymer interaction strength, where a lower LoC was observed for systems with stronger interactions. The aim of this study was to investigate the causality between drug-PVPVA interaction strength and LoC. Four chemical analogues with diverse abilities to interact with PVPVA were used as model drugs. The distribution of the polymer between the dilute aqueous phase and the insoluble nanoparticles containing drug was studied with solution nuclear magnetic resonance spectroscopy and traditional separation techniques to understand the thermodynamics of the systems in a dilute environment. Polymer diffusion to and from ASD particles suspended in aqueous solution was monitored for drug loads above the LoC to investigate the thermodynamic driving force for polymer release. The surface composition of ASD compacts before and after exposure to buffer was studied with Fourier transform infrared spectroscopy to capture potential kinetic barriers to release. It was found that ASD compacts with drug loads above the LoC formed an insoluble barrier on the surface that was in pseudo-equilibrium with the aqueous phase and prevented further release of drugs and polymers during dissolution. The insoluble barrier contained a substantial amount of the polymer for the strongly interacting drug-polymer systems. In contrast, a negligible amount was found for the weakly interacting systems. This observation provides an explanation for the ability of strongly interacting systems to form an insoluble barrier at lower drug loads. The study highlights the importance of thermodynamic and kinetic factors on the dissolution behavior of ASDs and provides a potential framework for maximizing the drug load in ASDs.


Assuntos
Polímeros , Solubilidade , Liberação Controlada de Fármacos , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Pharm Res ; 40(3): 777-790, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36859747

RESUMO

PURPOSE: Plasticizers are commonly used in the preparation of amorphous solid dispersions (ASDs) with the main goal of aiding processability; however, to the best of our knowledge, the impact of plasticizers on drug release has not been explored. The goal of this study was to evaluate diverse plasticizers, including glycerol and citrate derivatives, as additives to increase the drug loading where good drug release could be achieved from copovidone (PVPVA)-based dispersions, focusing on high glass transition (Tg) drugs, atazanavir (ATZ) and ledipasvir (LED). METHODS: ASDs were prepared using the high Tg compounds, atazanavir (ATZ) and ledipasvir (LED), as model drugs. Release was evaluated using surface normalized dissolution testing. Differential scanning calorimetry was used to measure glass transition temperature and water vapor sorption was performed on select samples. RESULTS: The presence of a plasticizer at 5% w/w for ATZ and 10% w/w for LED ASDs, led to improved drug release. For ATZ ASDs, in the absence of plasticizer, release was very poor at drug loadings of 10% w/w and above. Good release was obtained for plasticized ASDs up to a drug loading of 25%. The corresponding improvement for LED was from 5 to 20% DL. Interestingly, for a low Tg compound, ritonavir, relatively smaller improvements in release as a function of drug loading were achieved through plasticizer incorporation. CONCLUSIONS: The use of plasticizers represents a potential new strategy to increase drug loading in ASDs for high Tg compounds with a low tendency to crystallize and may help improve a major limitation of ASD formulations, namely the high excipient burden.


Assuntos
Benzimidazóis , Plastificantes , Plastificantes/química , Solubilidade , Sulfato de Atazanavir , Liberação Controlada de Fármacos , Composição de Medicamentos
5.
Pharm Res ; 39(2): 381-397, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35169959

RESUMO

PURPOSE: To understand the role of different surfactants, incorporated into amorphous solid dispersions (ASDs) of ritonavir and copovidone, in terms of their impact on release, phase behavior and stabilization of amorphous precipitates formed following drug release. METHODS: Ternary ASDs with ritonavir, copovidone and surfactants (30:70:5 w/w/w) were prepared by rotary evaporation. ASD release performance was tested using Wood's intrinsic dissolution rate apparatus and compared to the binary drug-polymer ASD with 30% drug loading. Size measurement of amorphous droplets was performed using dynamic light scattering. Solid state characterization was performed using attenuated total reflectance-infrared spectroscopy, differential scanning calorimetry and scanning electron microscopy. RESULTS: All surfactant-containing ASDs showed improvement over the binary ASD. Span 85 and D-α-tocopheryl polyethylene glycol succinate (TPGS) showed complete release with no evidence of AAPS or crystallization whereas Span 20 and Tween 80 showed < 50% release with amorphous amorphous phase separation (AAPS). Span 20 also induced solution crystallization. Sodium dodecyl sulfate (SDS) showed very rapid, albeit incomplete (~ 80%) release. AAPS was not observed with SDS. However, crystallization on the dissolving solid surface was noted. Span 20 and TPGS formed the smallest and most size-stable droplets with ~ 1 µm size whereas coalescence was noted with other surfactants. CONCLUSIONS: Surfactants improved the release performance relative to the binary ASD. Different surfactant types impacted overall performance to varying extents and affected different attributes. Overall, Span 85 showed best performance (complete release, no crystallization/AAPS and small droplet size). Correlation between physicochemical properties and surfactant performance was not observed.


Assuntos
Inibidores da Protease de HIV/química , Hexoses/química , Pirrolidinas/química , Ritonavir/química , Tensoativos/química , Compostos de Vinila/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Cinética , Polissorbatos/química , Solubilidade , Vitamina E/química
6.
Pharm Res ; 39(1): 167-188, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35013849

RESUMO

PURPOSE: Surfactants are increasingly being added to amorphous solid dispersion (ASDs) formulations to enhance processability and release performance. The goal of the current work was to investigate the impact of cationic, anionic and non-ionic surfactants on the rate and extent of clopidogrel (CPD) release from copovidone-based ASDs. METHODS: CPD release was evaluated for ASDs with different drug loadings using a surface normalized intrinsic dissolution apparatus. Studies were also carried out using dynamic light scattering, zeta potential measurements, and nuclear magnetic resonance spectroscopy to probe the impact of surfactants on drug-rich nanodroplet physical stability and clopidogrel-surfactant interactions. RESULTS: CPD ASDs showed good release for drug loadings as high as 40%, before the release fell off a cliff at higher drug loadings. Only sodium dodecyl sulfate, added at a 5% level, was able to improve the release at 50% drug loading, with other surfactants proving to be ineffective. However, some of the surfactants evaluated did show some benefits in improving nanodroplet stability against size enlargement. Ionic and non-ionic surfactants were observed to interact differently with CPD-rich nanodroplets, and variations in the kinetics and morphology of water-induced phase separation were noted in the presence and absence of surfactants in ASD films. CONCLUSIONS: In summary, addition of surfactants to ASD formulations may lead to some improvements in formulation performance, but predictive capabilities and mechanisms of surfactant effect still require further studies.


Assuntos
Tensoativos , Clopidogrel , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Pirrolidinas , Solubilidade , Tensoativos/química , Compostos de Vinila
7.
Mol Pharm ; 18(9): 3496-3508, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34319746

RESUMO

For poorly soluble drugs formulated as amorphous solid dispersions (ASDs), fast and complete release with the generation of drug-rich colloidal particles is beneficial for optimizing drug absorption. However, this ideal dissolution profile can only be achieved when the drug releases at the same normalized rate as the polymer, also known as congruent release. This phenomenon only occurs when the drug loading (DL) is below a certain value. The maximal DL at which congruent release occurs is defined as the limit of congruency (LoC). The purpose of this study was to investigate the relationship between drug chemical structure and LoC for PVPVA-based ASDs. The compounds investigated shared a common scaffold substituted with different functional groups, capable of forming hydrogen bonds only, halogen bonds only, both hydrogen and halogen bonds, or nonspecific interactions only with the polymer. Intermolecular interactions were studied and confirmed by X-ray photoelectron spectroscopy and infrared spectroscopy. The release rates of ASDs with different DLs were investigated using surface area normalized dissolution. ASDs with hydrogen bond formation between the drug and polymer had lower LoCs, while compounds that were only able to form halogen bonds or nonspecific interactions with the polymer achieved considerably higher LoCs. This study highlights the impact of different types of drug-polymer interactions on ASD dissolution performance, providing insights into the role of drug and polymer chemical structures on the LoC and ASD performance in general.


Assuntos
Composição de Medicamentos/métodos , Polímeros/química , Pirrolidinas/química , Compostos de Vinila/química , Química Farmacêutica , Coloides , Liberação Controlada de Fármacos , Excipientes/química
8.
Mol Pharm ; 16(3): 1327-1339, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30669846

RESUMO

The aim of this study was to probe the dissolution mechanisms of amorphous solid dispersions (ASDs) of a poorly water-soluble drug formulated with a hydrophilic polymer. Ritonavir (RTV) and polyvinylpyrrolidone/vinyl acetate (PVPVA) were used as the model drug and polymer, respectively. ASDs with drug loadings (DLs) from 10 to 50 wt % were prepared by solvent evaporation. Surface-normalized dissolution experiments were carried out using Wood's intrinsic dissolution apparatus, and both drug and polymer release were quantified. ASDs at or below 25% DL showed rapid, complete, and congruent (i.e., simultaneous) release of the drug and polymer with dissolution rates similar to that of the polymer alone. The highest drug loading at which congruent release was observed is termed the limit of congruency (LoC) and occurred at 25% DL for RTV-PVPVA. The ASD with 30% DL showed an initial lag time, followed by a period of congruent release. At later times, the release of drug and polymer became incongruent with polymer releasing faster than drug. Higher DL ASDs (40 and 50%) showed slow release of both drug and polymer, whereby the drug release rate was similar to that of the neat amorphous drug. In cases where the release of the ASD components was congruent or close to congruent, the drug concentration exceeded the amorphous solubility, and liquid-liquid phase separation (LLPS) occurred with the formation of colloidal, drug-rich species. Solid state analyses of the ASD tablet surface by infrared spectroscopy and scanning electron microscopy revealed that the partially dissolved tablet surface remains smooth, and drug-polymer miscibility is retained at low DLs; whereas, at a very high DL, the surface is porous and enriched with amorphous drug. In concert, these observations suggest that ASD dissolution and drug release at low DLs is governed primarily by hydrophilic polymer; whereas, at high DLs, amorphous drug controls dissolution. Fluorescence microscopy images of thin ASD films suggested that ASDs at or below the LoC remain homogeneous even after exposure to water. In contrast ASDs with DL above LoC undergo, to various extents, water-induced amorphous-amorphous phase separation (AAPS) leading to demixing of the drug and polymer. Correlating the observations of the dissolution study with the solid state data suggest that the ASDs with DLs higher than the LoC undergo AAPS in the hydrating matrix on the surface of the dissolving solid during dissolution, leading to separation of drug and polymer, the formation of a drug-rich interface, and hence, incongruent and/or slow release of the components. In contrast, low DL ASDs dissolve before AAPS occurs. The competition between these two parallel and competing processes on the surface of ASD solids, i.e., dissolution and AAPS, thus dictates the overall release characteristics of the ASD formulations, which is one of the most important considerations in designing formulations with superior dissolution and absorption.


Assuntos
Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Pirrolidinas/química , Ritonavir/química , Compostos de Vinila/química , Cristalização , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Polímeros/química , Solubilidade , Espectrofotometria Infravermelho , Propriedades de Superfície , Comprimidos/química , Água/química
9.
Mol Pharm ; 16(12): 5054-5067, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31689113

RESUMO

The generation of a colloidal drug-rich phase by dissolving an amorphous solid dispersion (ASD) is thought to have a positive impact on oral absorption and bioavailability. Thus, understanding which formulations generate these species is important. In this study, ledipasvir-copovidone ASDs, with and without surfactants, were prepared, and their release performance was examined at different drug loadings. An intrinsic dissolution rate assembly was used to limit potential surface area variations among formulations, and the release of both polymer and drug was monitored as a function of time. Drug-rich colloids only formed when the drug loading (DL) was at or below 5%; at a DL of 7.5% or above, drug release became negligible. The drug and polymer released congruently at and below 5% DL and incongruently at higher DLs. Thus, the limit of congruency (LoC) is between 5 and 7.5% DL. X-ray photoelectron spectroscopy (XPS) of partially dissolved tablet surfaces revealed that a drug-rich layer formed on the surface of the tablet. This was most evident for the higher DL ASDs and led to amorphous drug-controlled dissolution. Consequently, the surface drug-enriched layer physically hindered the polymer from further release. Evidence is provided that the extent of drug-polymer interactions as a function of DL plays a central role in dictating the observed release behavior. Some surfactants were found to promote the formation of drug-rich colloids at considerably higher DLs, providing a formulation strategy to increase the LoC.


Assuntos
Benzimidazóis/química , Fluorenos/química , Pirrolidinas/química , Compostos de Vinila/química , Química Farmacêutica/métodos , Excipientes/química , Espectroscopia Fotoeletrônica/métodos , Polímeros/química , Solubilidade , Tensoativos/química , Comprimidos/química
11.
Pharm Res ; 35(8): 158, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29916053

RESUMO

PURPOSE: The overall purpose of this study was to understand the impact of different biorelevant media types on solubility and crystallization from supersaturated solutions of model compounds (atazanavir, ritonavir, tacrolimus and cilnidipine). The first aim was to understand the influence of the lecithin content in FaSSIF. As the human intestinal fluids (HIFs) contain a variety of bile salts in addition to sodium taurocholate (STC), the second aim was to understand the role of these bile salts (in the presence of lecithin) on solubility and crystallization from supersaturated solutions, METHODS: To study the impact of lecithin, media with 3 mM STC concentration but varying lecithin concentration were prepared. To test the impact of different bile salts, a new biorelevant medium (Composite-SIF) with a composition simulating that found in the fasted HIF was prepared. The crystalline and amorphous solubility was determined in these media. Diffusive flux measurements were performed to determine the true supersaturation ratio at the amorphous solubility of the compounds in various media. Nucleation induction times from supersaturated solutions were measured at an initial concentration equal to the amorphous solubility (equivalent supersaturation) of the compound in the given medium. RESULTS: It was observed that, with an increase in lecithin content at constant STC concentration (3 mM), the amorphous solubility of atazanavir increased and crystallization was accelerated. However, the crystalline solubility remained fairly constant. Solubility values were higher in FaSSIF compared to Composite-SIF. Longer nucleation induction times were observed for atazanavir, ritonavir and tacrolimus in Composite-SIF compared to FaSSIF at equivalent supersaturation ratios. CONCLUSIONS: This study shows that variations in the composition of SIF can lead to differences in the solubility and crystallization tendency of drug molecules, both of which are critical when evaluating supersaturating systems.


Assuntos
Secreções Intestinais/química , Lecitinas/química , Preparações Farmacêuticas/química , Algoritmos , Sulfato de Atazanavir/química , Bloqueadores dos Canais de Cálcio/química , Cristalização , Di-Hidropiridinas/química , Inibidores da Protease de HIV/química , Humanos , Imunossupressores/química , Ritonavir/química , Solubilidade , Soluções/química , Tacrolimo/química
12.
Pharm Res ; 34(6): 1276-1295, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28352994

RESUMO

PURPOSE: The goals of this study were to determine: 1) the impact of surfactants on the "amorphous solubility"; 2) the thermodynamic supersaturation in the presence of surfactant micelles; 3) the mechanism of solute solubilization by surfactant micelles in supersaturated solutions. METHODS: The crystalline and amorphous solubility of atazanavir was determined in the presence of varying concentrations of micellar sodium dodecyl sulfate (SDS). Flux measurements, using a side-by-side diffusion cell, were employed to determine the free and micellar-bound drug concentrations. The solubilization mechanism as a function of atazanavir concentration was probed using fluorescence spectroscopy. Pulsed gradient spin-echo proton nuclear magnetic resonance (PGSE-NMR) spectroscopy was used to determine the change in micelle size with a change in drug concentration. RESULTS: Changes in the micelle/water partition coefficient, K m/w , as a function of atazanavir concentration led to erroneous estimates of the supersaturation when using concentration ratios. In contrast, determining the free drug concentration using flux measurements enabled improved determination of the thermodynamic supersaturation in the presence of micelles. Fluorescence spectroscopic studies suggested that K m/w changed based on the location of atazanavir solubilization which in turn changed with concentration. Thus, at a concentration equivalent to the crystalline solubility, atazanavir is solubilized by adsorption at the micelle corona, whereas in highly supersaturated solutions it is also solubilized in the micellar core. This difference in solubilization mechanism can lead to a breakdown in the prediction of amorphous solubility in the presence of SDS as well as challenges with determining supersaturation. PGSE-NMR suggested that the size of the SDS micelle is not impacted at the crystalline solubility of the drug but increases when the drug concentration reaches the amorphous solubility, in agreement with the proposed changes in solubilization mechanism. CONCLUSIONS: Micellar solubilization of atazanavir is complex, with the solubilization mechanism changing with differences in the degree of (super)saturation. This can result in erroneous predictions of the amorphous solubility and thermodynamic supersaturation in the presence of solubilizing additives. This in turn hinders understanding of the driving force for phase transformations and membrane transport, which is essential to better understand supersaturating dosage forms.


Assuntos
Sulfato de Atazanavir/química , Nanopartículas/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Cinética , Micelas , Tamanho da Partícula , Solubilidade , Soluções , Espectrometria de Fluorescência , Propriedades de Superfície , Termodinâmica
13.
Mol Pharm ; 13(6): 2059-69, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27138900

RESUMO

Recent studies on aqueous supersaturated lipophilic drug solutions prepared by methods including antisolvent addition, pH swing, or dissolution of amorphous solid dispersions (ASDs) have demonstrated that when crystallization is slow, these systems undergo liquid-liquid phase separation (LLPS) when the concentration of the drug in the medium exceeds its amorphous solubility. Following LLPS, a metastable equilibrium is formed where the concentration of drug in the continuous phase corresponds to the amorphous solubility while the dispersed phase is composed of a nanosized drug-rich phase. It has been reasoned that the drug-rich phase may act as a reservoir, enabling the rate of passive transport of the drug across a membrane to be maintained at the maximum value for an extended period of time. Herein, using clotrimazole as a model drug, and a flow-through diffusion cell, the reservoir effect is demonstrated. Supersaturated clotrimazole solutions at concentrations below the amorphous solubility show a linear relationship between the maximum flux and the initial concentration. Once the concentration exceeds the amorphous solubility, the maximum flux achieved reaches a plateau. However, the duration for which the high flux persists was found to be highly dependent on the number of drug-rich nanodroplets present in the donor compartment. Macroscopic amorphous particles of clotrimazole did not lead to the same reservoir effect observed with the nanodroplets formed through the process of LLPS. A first-principles mathematical model was developed which was able to fit the experimental receiver concentration-time profiles for concentration regimes both below and above amorphous solubility, providing support for the contention that the nanodroplet phase does not directly diffuse across the membrane but, instead, rapidly replenishes the drug in the aqueous phase that has been removed by transport across the membrane. This study provides important insight into the properties of supersaturated solutions and how these might in turn impact oral absorption through effects on passive membrane transport rates.


Assuntos
Preparações de Ação Retardada/química , Membranas/metabolismo , Preparações Farmacêuticas/química , Transporte Biológico/fisiologia , Química Farmacêutica/métodos , Cristalização/métodos , Difusão , Nanopartículas/química , Solubilidade , Soluções/química , Água/química
14.
Mol Pharm ; 12(7): 2365-77, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-25984769

RESUMO

Supersaturated solutions of poorly aqueous soluble drugs can be formed both in vivo and in vitro. For example, increases in pH during gastrointestinal transit can decrease the aqueous solubility of weakly basic drugs resulting in supersaturation, in particular when exiting the acidic stomach environment. Recently, it has been observed that highly supersaturated solutions of drugs with low aqueous solubility can undergo liquid-liquid phase separation (LLPS) prior to crystallization, forming a turbid solution such that the concentration of the drug in the continuous solution phase corresponds to the amorphous solubility while the colloidal phase is composed of a disordered drug-rich phase. Although it is well established that the equilibrium solubility of crystalline weakly basic drugs follows the Henderson-Hasselbalch relationship, the impact of pH on the LLPS phenomenon or the amorphous solubility has not been explored. In this work, the LLPS concentration of three weakly basic compounds-clotrimazole, nicardipine, and atazanavir-was determined as a function of pH using three different methods and was compared to the predicted amorphous solubility, which was calculated from the pH-dependent crystalline solubility and by estimating the free energy difference between the amorphous and crystalline forms. It was observed that, similar to crystalline solubility, the experimental amorphous solubility at any pH follows the Henderson-Hasselbalch relation and can be predicted if the amorphous solubility of the free base is known. Excellent agreement between the LLPS concentration and the predicted amorphous solubility was observed. Dissolution studies of amorphous drugs showed that the solution concentration can reach the corresponding LLPS concentration at that pH. Solid-state analysis of the precipitated material confirmed the amorphous nature. This work provides insight into the pH-dependent precipitation behavior of poorly water-soluble compounds and provides a fundamental basis with which to understand the performance of supersaturating dosage forms.


Assuntos
Soluções Farmacêuticas/química , Álcalis/química , Cristalização/métodos , Concentração de Íons de Hidrogênio , Solubilidade , Água/química
15.
Int J Pharm ; 625: 122120, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35987321

RESUMO

Amorphous solid dispersion formulations (ASD) are increasingly being used as a formulation strategy to improve bioavailability of poorly soluble drugs. One of the limitations of ASDs, in particular for high glass transition temperature (Tg) compounds, is the drug loading threshold (termed the limit of congruency, LoC) below which rapid, complete and congruent release of drug and polymer is achieved. In this study, several ionic and non-ionic surfactants were added to atazanavir-copovidone ASDs with the main goal of increasing the limit of congruency. Atazanavir (ATZ) is a relatively high Tg compound with a LoC of 5 % drug loading (DL). Surface normalized dissolution studies revealed that addition of 5 % w/w of surfactant, sodium dodecyl sulfate (SDS) or cetrimonium bromide (CTAB), to the binary copovidone-based ASD doubled the LoC (from 5 to 10 % DL), resulting in a more than 30-fold increase in total release compared to the corresponding binary ASD. Moreover, addition of 5 % of Span®80 increased the LoC to 15 % DL. ASD Tg was found to decrease upon addition of surfactants and water sorption extent was found to increase. We speculate that surfactants act as plasticizers, which may facilitate polymer release from ASDs containing a high Tg drug, providing a possible explanation for the observed enhancement in drug release from ternary ASDs and the increase in LoC.


Assuntos
Polímeros , Tensoativos , Sulfato de Atazanavir , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Solubilidade
16.
J Pharm Sci ; 106(8): 1998-2008, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28431965

RESUMO

It has been observed that certain amorphous solid dispersions (ASDs), upon dissolution, generate drug-rich amorphous nanodroplets. These nanodroplets, present as a dispersed phase, can potentially enhance oral bioavailability of poorly soluble drugs by serving as a drug reservoir that efficiently feeds the continuous aqueous solution phase following absorption of drug. The purpose of this study is to probe the formation mechanism of the nanodroplets. The model system studied was nifedipine (NFD) formulated as an ASD with hydroxypropyl methylcellulose E5 Premium LV or polyvinylpyrrolidone/vinyl acetate. Dissolution of ASDs prepared with proteated nifedipine (H-NFD) was carried out in a medium saturated with deuterated nifedipine (D-NFD) at the amorphous solubility. Upon dissolution, the H/D composition of NFD aqueous solution was determined using nuclear magnetic resonance spectroscopy. The results suggested that isotopic scrambling (equilibrium in the distribution of deuterated and proteated form of the drug) had occurred. Thus, as the H-NFD was brought into the aqueous solution via ASD dissolution, the drug concentration in solution exceeded the amorphous solubility. Subsequent precipitation of the drug, a process which does not differentiate H-NFD from D-NFD, generated NFD nanodroplets and resulted in redistribution of the isotopes. Thus, nanodroplets of NFD are formed due to dissolution of these homogenous ASDs followed by precipitation of the drug from aqueous solutions.


Assuntos
Bloqueadores dos Canais de Cálcio/química , Derivados da Hipromelose/química , Nifedipino/química , Povidona/química , Compostos de Vinila/química , Cristalização , Composição de Medicamentos , Excipientes/química , Espectroscopia de Ressonância Magnética , Nanoestruturas/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA