Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429920

RESUMO

In this paper, solutions for precise maneuvering of an autonomous small (e.g., 350-class) Unmanned Aerial Vehicles (UAVs) are designed and implemented from smart modifications of non expensive mass market technologies. The considered class of vehicles suffers from light load, and, therefore, only a limited amount of sensors and computing devices can be installed on-board. Then, to make the prototype capable of moving autonomously along a fixed trajectory, a "cyber-pilot", able on demand to replace the human operator, has been implemented on an embedded control board. This cyber-pilot overrides the commands thanks to a custom hardware signal mixer. The drone is able to localize itself in the environment without ground assistance by using a camera possibly mounted on a 3 Degrees Of Freedom (DOF) gimbal suspension. A computer vision system elaborates the video stream pointing out land markers with known absolute position and orientation. This information is fused with accelerations from a 6-DOF Inertial Measurement Unit (IMU) to generate a "virtual sensor" which provides refined estimates of the pose, the absolute position, the speed and the angular velocities of the drone. Due to the importance of this sensor, several fusion strategies have been investigated. The resulting data are, finally, fed to a control algorithm featuring a number of uncoupled digital PID controllers which work to bring to zero the displacement from the desired trajectory.

2.
Chaos ; 29(8): 083123, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472518

RESUMO

A stochastic reaction-diffusion model is studied on a networked support. In each patch of the network, two species are assumed to interact following a non-normal reaction scheme. When the interaction unit is replicated on a directed linear lattice, noise gets amplified via a self-consistent process, which we trace back to the degenerate spectrum of the embedding support. The same phenomenon holds when the system is bound to explore a quasidegenerate network. In this case, the eigenvalues of the Laplacian operator, which governs species diffusion, accumulate over a limited portion of the complex plane. The larger the network, the more pronounced the amplification. Beyond a critical network size, a system deemed deterministically stable, hence resilient, can develop seemingly regular patterns in the concentration amount. Non-normality and quasidegenerate networks may, therefore, amplify the inherent stochasticity and so contribute to altering the perception of resilience, as quantified via conventional deterministic methods.

3.
Am Nat ; 190(3): 398-409, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28829636

RESUMO

Scavenging is ubiquitous in nature, but its implications have rarely been investigated. We used camera traps on wolf kills to investigate the role of scavenging on predator and multiprey dynamics in a northern Apennine system in Italy. In contrast to North American systems, the omnivorous wild boar successfully competes with wolves for the meat of their kills. We developed a deterministic, multitrophic web model (wolf, vegetation, deer, and wild boar), tunable through a parameter that governs the impact of prey sharing between wolves and wild boar. When prey sharing is scarce, populations oscillate, but above a threshold value the trophic web is stabilized, with the regime solution becoming a fixed, stable point. Both deer and wild boar then increase as a function of prey sharing, and the impact of herbivores on the vegetation increases. When prey sharing exceeds another threshold, the system collapses due to the extinction of both wolves and wild boar. Our analysis shows that scavenging is crucial for the dynamics of this ecosystem, and thus it should not be overlooked in food web modeling. The exploitation of wolf kills by wild boar may allow juveniles and yearlings to obtain high-quality resources that are not usually available, helping the wild boar to compensate for losses caused by hunting. This is likely to make them even more invasive and difficult to control.


Assuntos
Ecossistema , Cadeia Alimentar , Lobos , Animais , Cervos , Itália , Dinâmica Populacional , Comportamento Predatório
4.
IEEE Trans Cybern ; 52(3): 1822-1835, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32559170

RESUMO

This article introduces a new class of memristor neural networks (NNs) for solving, in real-time, quadratic programming (QP) and linear programming (LP) problems. The networks, which are called memristor programming NNs (MPNNs), use a set of filamentary-type memristors with sharp memristance transitions for constraint satisfaction and an additional set of memristors with smooth memristance transitions for memorizing the result of a computation. The nonlinear dynamics and global optimization capabilities of MPNNs for QP and LP problems are thoroughly investigated via a recently introduced technique called the flux-charge analysis method. One main feature of MPNNs is that the processing is performed in the flux-charge domain rather than in the conventional voltage-current domain. This enables exploiting the unconventional features of memristors to obtain advantages over the traditional NNs for QP and LP problems operating in the voltage-current domain. One advantage is that operating in the flux-charge domain allows for reduced power consumption, since in an MPNN, voltages, currents, and, hence, power vanish when the quick analog transient is over. Moreover, an MPNN works in accordance with the fundamental principle of in-memory computing, that is, the nonlinearity of the memristor is used in the dynamic computation, but the same memristor is also used to memorize in a nonvolatile way the result of a computation.


Assuntos
Redes Neurais de Computação , Dinâmica não Linear
5.
Front Neurosci ; 15: 681035, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177457

RESUMO

Since the introduction of memristors, it has been widely recognized that they can be successfully employed as synapses in neuromorphic circuits. This paper focuses on showing that memristor circuits can be also used for mimicking some features of the dynamics exhibited by neurons in response to an external stimulus. The proposed approach relies on exploiting multistability of memristor circuits, i.e., the coexistence of infinitely many attractors, and employing a suitable pulse-programmed input for switching among the different attractors. Specifically, it is first shown that a circuit composed of a resistor, an inductor, a capacitor and an ideal charge-controlled memristor displays infinitely many stable equilibrium points and limit cycles, each one pertaining to a planar invariant manifold. Moreover, each limit cycle is approximated via a first-order periodic approximation analytically obtained via the Describing Function (DF) method, a well-known technique in the Harmonic Balance (HB) context. Then, it is shown that the memristor charge is capable to mimic some simplified models of the neuron response when an external independent pulse-programmed current source is introduced in the circuit. The memristor charge behavior is generated via the concatenation of convergent and oscillatory behaviors which are obtained by switching between equilibrium points and limit cycles via a properly designed pulse timing of the current source. The design procedure takes also into account some relationships between the pulse features and the circuit parameters which are derived exploiting the analytic approximation of the limit cycles obtained via the DF method.

6.
Chaos ; 17(4): 043128, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18163792

RESUMO

The dynamical phases of the Hindmarsh-Rose neuronal model are analyzed in detail by varying the external current I. For increasing current values, the model exhibits a peculiar cascade of nonchaotic and chaotic period-adding bifurcations leading the system from the silent regime to a chaotic state dominated by bursting events. At higher I-values, this phase is substituted by a regime of continuous chaotic spiking and finally via an inverse period doubling cascade the system returns to silence. The analysis is focused on the transition between the two chaotic phases displayed by the model: one dominated by spiking dynamics and the other by bursts. At the transition an abrupt shrinking of the attractor size associated with a sharp peak in the maximal Lyapunov exponent is observable. However, the transition appears to be continuous and smoothed out over a finite current interval, where bursts and spikes coexist. The beginning of the transition (from the bursting side) is signaled from a structural modification in the interspike interval return map. This change in the map shape is associated with the disappearance of the family of solutions responsible for the onset of the bursting chaos. The successive passage from bursting to spiking chaos is associated with a progressive pruning of unstable long-lasting bursts.


Assuntos
Modelos Neurológicos , Neurônios/patologia , Dinâmica não Linear , Potenciais de Ação , Algoritmos , Animais , Simulação por Computador , Humanos , Modelos Estatísticos , Modelos Teóricos , Transmissão Sináptica , Teoria de Sistemas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA